
Noname manuscript No.
(will be inserted by the editor)

Scheduled Approximation and Incremental Enhancement
for Accuracy-aware Personalized PageRank

Fanwei Zhu · Yuan Fang · Kevin C. Chang · Jing Ying

the date of receipt and acceptance should be inserted later

Abstract As Personalized PageRank has been widely

leveraged for ranking on a graph, the efficient computa-

tion of Personalized PageRank Vector (PPV) becomes

a prominent issue. In this paper, we propose FastPPV,

an approximate PPV computation algorithm that is in-

cremental and accuracy-aware. Our approach hinges on

a novel paradigm of scheduled approximation: the com-

putation is partitioned and scheduled for processing in

an “organized” way, such that we can gradually improve

our PPV estimation in an incremental manner, and

quantify the accuracy of our approximation at query

time. Guided by this principle, we develop an efficient

hub based realization, where we adopt the metric of

hub-length to partition and schedule random walk tours

so that the approximation error reduces exponentially

over iterations. In addition, as tours are segmented by

hubs, the shared substructures between different tours

(around the same hub) can be reused to speed up query

processing both within and across iterations. Given the

key roles played by the hubs, we further investigate the

This material is based upon work partially supported by NSF
Grant IIS 1018723, the Advanced Digital Sciences Center
of the University of Illinois at Urbana-Champaign, and the
Agency for Science, Technology and Research of Singapore.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the funding agencies.

F. Zhu · J. Ying
Zhejiang University City College, Hangzhou, China,
E-mail: {zhufw, yingj}@zucc.edu.cn

Y. Fang
Institute for Infocomm Research, Singapore
E-mail: yfang@i2r.a-star.edu.sg

K. C. Chang
University of Illinois at Urbana-Champaign, USA
Advanced Digital Sciences Center, Singapore
E-mail: kcchang@illinois.edu

problem of hub selection. In particular, we develop a

conceptual model to select hubs based on the two de-

sirable properties of hubs–sharing and discriminating,

and present several different strategies to realize the

conceptual model. Finally, we evaluate FastPPV over

two real-world graphs, and show that it not only sig-

nificantly outperforms two state-of-the-art baselines in

both online and offline phrases, but also scale well on

larger graphs. In particular, we are able to achieve near-

constant time online query processing irrespective of

graph size.

1 Introduction

Graphs are ubiquitous in the real-world, such as the

Web, social networks and entity-relationship graphs,

calling for solutions to ranking on a graph. Formally,

a graph G = (V,E) is represented by a set of nodes

V and edges E. As each edge embeds certain semantic

relationship between the nodes, given a node q ∈ V as

the query, what are the nodes relevant to q through the

edges in E? Here, the input is a query q, and the output

is a ranked list of nodes in V . We motivate such ranking

with two example scenarios.

Scenario 1: Bibliographic search. Consider a bib-

liographic network with interconnected nodes such as

papers, venues and authors. Given a paper, who are

the best matching experts to review it? In this case,

the input query is a paper node, and the output is a

ranking over the author nodes in the network.

Scenario 2: Social recommendation. Consider a so-

cial network with users as nodes, which are connected

by their friendships. Given a user in the network, how

can we recommend some potential friends to her? Tak-

2 Fanwei Zhu et al.

ing the user node as the input query, a ranking over all

the other user nodes can be leveraged for the recom-

mendation task.

In the above scenarios, the rankings are specific to

the dynamic queries, reflecting the “relevance” of nodes

to the query node. As a well-studied graph ranking al-

gorithm, Personalized PageRank [19,16] is effective in

calculating such query-specific relevance based on the

link structure of the graph. In this paper, we study the

efficiency aspect of Personalized PageRank.

Background on Personalized PageRank. Person-

alized PageRank is an extension of the famous PageR-

ank algorithm [19], both of which are based on a ran-

dom surfer model.

To understand Personalized PageRank, we first re-

view the original PageRank briefly. A random surfer

starts at any node on the graph. At each step, with a

probability of 1 − α the surfer moves to a neighboring

node randomly, and with a probability of α she gets

bored and teleports to a random node on the graph.

This process is repeated until the random walk con-

verges to a steady state. The stationary probability of

the surfer at each node is taken as the PageRank score

of the node. However, this form of score is purely based

on the static link structure, indicating the overall “pop-

ularity” of each node on the graph, without tailoring to

a specific query node.

In contrast, Personalized PageRank enables query-

sensitive ranking, in the sense that we can specify a

query node to obtain a “personalized” ranking accord-

ingly. It is based on the same random surfer model

of the original PageRank, except when the surfer tele-

ports, she always prefers the query node q. Specifically,

at each step, with probability α the surfer teleports to

q instead of a random node, thus visiting the neighbor-

hood of q more frequently. Thus, the stationary distri-

bution, called a Personalized PageRank Vector (PPV),

is biased towards q and its neighborhood, which can be

interpreted as a popularity or relevance metric specific

to q. We denote the PPV w.r.t. a query node q by rq,

and rq(p) refers to the entry corresponding to node p

in rq, i.e., p’s score w.r.t. q.

More generally, a query q can comprise multiple

nodes on the graph, such that in the teleportation the

surfer can jump to any node in q. Fortunately, the com-

putation for a multi-node query is no more difficult than

for a single-node query due to the Linearity Theorem

[16,12,10], as the PPV w.r.t. a multi-node query is a

simple linear combination of the individual PPV w.r.t.

each node in the query. Hence, our discussion only cov-

ers single-node queries.

Challenges in efficiency. Unfortunately, computing

an exact PPV is, in general, infeasible even on a mod-

erately large graph due to the prohibitive time or space

cost [12,16]. To make exact computation manageable,

early works [15,16] restrict personalization (i.e., the

query) to only some selected nodes. While such partial

personalization is in some cases acceptable, most ap-

plications demand full personalization, which supports

any arbitrary node as queries. Thus, some recent ef-

forts [16,12,6,10,11] propose full personalization meth-

ods for approximate PPVs. They trade accuracy for

faster query processing by reducing the computation

in consideration online, as well as resorting to partial

precomputation offline, which we will further elaborate

in Sect. 2. However, in these schemes, once the offline

precomputation is completed at a predetermined ap-

proximation level, the trade-off between efficiency and

accuracy cannot be easily controlled dynamically.

Our proposal. In this paper, we present FastPPV,

an approximate algorithm for computing fully person-

alized PPV. To highlight, it features incremental and

accuracy-aware query processing, which means we can

control the trade-off between efficiency and accuracy

online. The key insight to achieve such a control hinges

on the novel concept of scheduled approximation—we

“organize” the random walk paths to be considered in

some meaningful layers, such that the approximation

can be incremented layer by layer, and more layers ren-

der better accuracy.

In particular, we develop this scheduled approxima-

tion upon an existing concept called inverse P-distance

[16]. As shown previously [16], a node p’s score in the

PPV w.r.t. a query node q equals to the inverse P-

distance from q to p, which is the reachability from q to

p through all possible tours (i.e., paths):

rq(p) ≡
∑

t∈{q p}
R(t), (1)

where a tour t ∈ {q p} is a sequence of edges from q

to p that may contain cycles. R(t), the reachability of

t, is the probability of reaching p from q through tour t

in a random walk. For a tour t of the form v0 → v1 →
· · · → vL(t) with length L(t),

R(t) , (1− α)L(t) · α ·
L(t)−1∏
i=0

1

|Out(vi)|
, (2)

where α ∈ (0, 1) is the teleporting probability in the

random surfer model, and |Out(vi)| denotes the out-

degree of node vi.

We note that inverse P-distance was previously ex-

plored [16] to decompose the computation of a PPV.

Specifically, they use inverse P-distance to compute some

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 3

PPV components for a restricted set of nodes, which are

then assembled to obtain the final PPVs w.r.t. those

restricted nodes. Thus, their goal is to compute exact

PPVs, but only for a fixed subset of nodes, lacking full

personalization. While identified as their future work

[16], devising an approximate algorithm for full person-

alization, solely based on their original use of inverse

P-distance without exploiting other properties, appears

implausible. In this paper, we solve this problem by

making a new observation on inverse P-distance—the

tours in Eq. 1 are not equally important in contribut-

ing to the computation. This observation prompts us

to investigate the novel principle of scheduled approx-

imation by partitioning and prioritizing tours, which

leverages inverse P-distance in a distinct way, as we

discuss next.

Principle (Sect. 3). We partition the set T of all tours

involved in inverse P-distance (Eq. 1) into disjoint sub-

sets T = T 0 ∪ · · · ∪ T η according to their contribu-

tion to the computation, and prioritize them to tackle

a more “important” partition T i earlier. While simple,

this partition-and-prioritize principle has remained un-

explored for PPV computation to this date, and pos-

sesses two ideal properties:

• Incremental. FastPPV processes tours partition by

partition, starting from T 0. In iteration-i, it covers

tours in T i to compute an increment r̂iq, adding to

the overall estimate r̂q = r̂0
q + · · · + r̂iq. As it cov-

ers more partitions, the error (in terms of L1 norm)

monotonically decreases, and r̂q asymptotically ap-

proaches rq.

• Accuracy-aware. In each iteration, we show that the

current L1 error is determinable using only the cur-

rent estimate, even without knowing the exact PPV.

Thus, this error can be utilized as a stopping condi-

tion to control the trade-off between efficiency and

accuracy at query time.

Realization (Sect. 4). To realize the basic principle

of partitioning tours, we propose a novel notion, hub

length. Given some hub nodes H selected from V , we

measure the hub length of a tour t, or Lh(t), as the num-

ber of hubs traversed by t. Then, we partition each T i

to contain tours of Lh(t) = i. With a carefully selected

set of hubs (which will be covered later), the goal is to

achieve the two desirable properties in the following to

enable efficient computation:

• Discriminating. By choosing nodes of high “decay-

ing power” to reduce the reachability of t (Eq. 2),

the fewer hubs t contains, the larger t’s reachability

becomes in general. Thus, tours in an earlier parti-

tion T i (with i hubs) tend to contribute more than

those in a later partition T k+m (with more than k

hubs), allowing us to efficiently focus on the first few

partitions that are more important for an accurate

estimation. We formally prove an error bound that

decreases exponentially as more partitions are cov-

ered.

• Sharing : By choosing “popular” nodes on the graph

as hubs such that they are more likely to be uti-

lized by queries, different tours will share the same

hubs. This sharing enables the reuse of common sub-

structures to speed up computation. First, as the tour

segments between hub nodes are shared, we can thus

precompute and index their reachabilities, which we

call prime PPVs, as building blocks to assemble an

arbitrary tour at query time. Second, as we build

partitions by hub length, it can be shown that tours

in partition T i simply extend those in T i−1 as pre-

fixes, and thus successive iterations can reuse these

prefixes.

Hub selection (Sect. 5). In the realization of FastPPV,

the choice of hubs H are crucial to efficient computa-

tion. To select a useful set of hubs, we develop a concep-

tual model to integrate the two desirable properties in

our realization—sharing and discriminating, by assess-

ing the popularity and decaying power of the candidate

hubs. We further explore several strategies to realize

the conceptual model:

• Näıve. As a first attempt, we do not assume any par-

ticular query distribution, and select each hub can-

didate independently of others.

• Query distribution-aware. Given that queries often

have a skewed distribution, we now consider the effect

of query distribution on hub selection.

• Community-based. Lastly, we observe that discrimi-

nating power of the hub nodes are not independent of

each other. In particular, the marginal (or additional)

discriminating power that a candidate hub h can offer

diminishes as more hubs lie in the “neighborhood” of

h. We propose to approximate these neighborhoods

by the communities in the graph [9], and diminish the

marginal discriminating power of a candidate hub if

many hubs already exist in its community.

Overall framework (Sect. 6). Upon the hub-based re-

alization, we devise an overall framework for FastPPV,

consisting of two stages:

• Offline precomputation: We identify a desirable set

of nodes as hubs, and precompute their prime PPVs

as building blocks for online processing.

4 Fanwei Zhu et al.

• Online query processing : We start from the tours of

hub length 0 in T 0, and further process tours of in-

creasing hub length in an iterative manner. Within

each iteration, precomputed building blocks can be

reused; across iterations, prefixes can be shared.

Through our scheduled approximation, online pro-

cessing is incremental (by the ability to handle tours

partition by partition), accuracy-aware (by the ability

to measure error), and fast (by the ability to reuse com-

putation). Furthermore, as real-world graphs are often

too large to entirely fit into the main memory, we also

propose a disk-based implementation.

Empirical evaluation (Sect. 7). Finally, we conduct

extensive experiments on two real-world datasets, the

bibliographic network DBLP, and the social network

LiveJournal. We compare FastPPV with two competi-

tive baselines [11,12], and find out that FastPPV sig-

nificantly outperforms them in both online and offline

phases. More importantly, we are able to demonstrate

the scalability of FastPPV on growing graphs. In partic-

ular, FastPPV can achieve a near-constant time query

processing irrespective of graph size, through only a lin-

ear increase in the offline precomputation costs.

2 Related work

While Personalized PageRank [19,16] enables a person-

alized or query dependent view of PageRank, its compu-

tation can be prohibitively expensive in time or space,

for not only online but also offline scenarios. Even on

a moderately large graph, it is infeasible to compute

PPVs online using the näıve iterative method. Alter-
natively, even with the Linearity Theorem [16], näıve

precomputation of the exact PPV w.r.t. every node on

the graph (i.e., full personalization) is time consum-

ing and requires at least Ω(|V |2) bits to store, which is

quadratic in |V | or the number of nodes on the graph.

It can be shown that the quadratic space complexity

holds no matter how clever the compression scheme is

[12].

Thus, designing efficient algorithms for personal-

ized PageRank has become an important research area.

While earlier work pursues exact computation by sup-

porting partial personalization (i.e., only a subset of

nodes can be used in a query), our work aligns with

more recent developments that aim at full personaliza-

tion (i.e., any node can be used in a query) at the cost

of accuracy.

Exact, partial personalization. Haveliwala et al. first

proposed topic-sensitive PageRank [15], which only pre-

computes 16 PPVs—each corresponds to a top level

category in the Open Directory Project1. With the Lin-

earity Theorem [16], finer-grained personalization can

be supported, e.g., in hub decomposition [16], intelli-

gent surfer [23] and ObjectRank [5]. Despite this, full

personalization is still infeasible on large graphs.

Approximate, full personalization. To achieve full

personalization, most efforts resort to approximate com-

putation instead. Intuitively and informally, the PPV

w.r.t. a query q is a measure over random-walk paths

starting from q. Thus, most of the existing approxima-

tion approaches can be perceived as a reduction in the

total number of paths in their computation. First, only

hub-pivoted paths that pass through some important

“hub” nodes are considered, e.g., Web Skeleton [16].

Second, only sampled paths using a Monte Carlo simu-

lation are considered, e.g., [12,4,3]. Third, only neigh-

borhood paths that are within some “radius” around

q are considered, e.g., Bookmark Coloring [6] and the

HubRank family [10,21,11].

For such approximation methods, the accuracy of

estimate and how to control it is always one of the

core issues. As for the hub-pivoted paths methods, the

choice of hubs would directly affect the accuracy. Jeh

& Widom [16] discuss how to choose a good hub set

H such that the PPV computed only on tours passing

through H would be a good approximation, but they

do not provide a formal gurantee on the accuracy of

approximation. The sampled paths methods use a pre-

computed database of sampled paths called fingerprints

for estimation. Fogaras et al. [12] prove that the accu-

racy could be improved by indexing more fingerprints

during offline stage and it would eventually converges to

the exact PPV with sufficiently large index. Bahmani et

al. [4,3] also leverage the notion of fingerprints for ap-

proximation, but opportunistically determine whether

to utilize some precomputed fingerprints or take on-the-

fly walks to answer a query. Therefore, the accuracy

of estimation can also be controlled by specifying the

number of online walks. In neighborhood paths methods,

PPVs are approximated on a neighboring subgraph of

the query, which is bordered by hubs. The precomputed

PPV of border hubs are used to compute the PPV of

the query in some iterative way. However, as the size

of subgraphs are determined by the preselected hubs, it

cannot control the accuracy dynamically.

In addition, some techniques leverage additional prop-

erties, such as the block structure of the web [17]. A few

top-K methods have also been explored [14,13], which

often rely on bounds to identify the top-K nodes with-

out an actual estimate on node scores.

1 http://www.dmoz.org/

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 5

Comparison to our work. Our work also build upon

the idea of reducing the number of paths for approx-

imation. However, instead of focusing on some neigh-

borhood around the query node [16,6,10,21,11] or ran-

domly sampled paths [12,4,3], we introduce a novel

approach of structured approximation that systemat-

ically organizes the entire computation space (i.e., all

the tours) by importance, and then gradually process it

in an orderly way to achieve an incrementally enhanced

approximation.

• Organizing the tour space. We recognize that tours

are of different importance in the computation, and

thus partition them into different sets so that tours

in the same partition sharing similar importance.

• Scheduling the processing of tours. In the partitioned

tour space, tours can be scheduled into computation

according to their importance, partition by partition,

gradually covering the entire computation space.

Such structured approximation leads to two distinct

properties of FastPPV, compared to existing approxi-

mation methods.

First, FastPPV is “important-first,” prioritizing more

important tours to generate a fast yet good initial es-

timate. As tours are organized by importance, we are

able to schedule more important tours into computa-

tion earlier, thus ensuring a good estimation even if we

stop after the initial few iterations. While many pre-

vious approaches can also achieve more accurate re-

sults by handling more tours, they are not necessarily

important-first. For example, Monte Carlo methods [12,

4,3] achieve higher accuracy by simulating more ran-

dom walk tours on the graph, but there is no guar-

antee that the most important tours will always be

sampled first. Thus, their approximation tends to suf-

fer more than FastPPV if computation stops earlier.

Other methods [6,10,21,11] obtain higher accuracy by

expanding an active subgraph around the query. Al-

though a smaller subgraph around the query intuitively

contain more important tours, the exact correspondence

between the structure of the subgraph and the impor-

tance of the tours remains unclear.

Second, FastPPV is “accuracy-aware,” knowing how

accurate the current estimate is during query time (of

course without the knowledge of the exact PPV). Our

structured approximation, which gradually covers the

entire tour space, means that its estimation is mono-

tonic (see Sect. 3). Monotonic estimation implies that

its accuracy can be easily established even though the

exact PPV is unknown. Thus, FastPPV is always aware

of the accuracy of its current estimate during query

time, and can terminate when the desired accuracy is

obtained. We note that the accuracy-aware property

due to monotonic estimation has not been investigated

in the literature. While other approaches also allow for

dynamic trade-off between accuracy and query time on-

line, in general they are not monotonic in nature and

thus are unaware of their current accuracy during query

processing. In particular, Monte Carlo methods [12,4,

3] do not generate monotonic estimates given randomly

sampled tours.

Apart from the key principle of structured approx-

imation, we also employ the concepts of hub and sub-

graph, although their purposes differ from what has

been explored in existing studies such as BCA and the

HubRank family [6,11].

On the one hand, FastPPV uses hubs to quantify

the importance of tours, in contrast to previous ap-

proaches which precompute a PPV for every hub. In

FastPPV, the importance of a tour is quantified by its

hub length (see Sect. 4), which means our hubs serve

a different purpose—to partition and prioritize com-

putation, rather than to directly provide precomputed

PPVs. As such, our offline precomputation is signifi-

cantly cheaper, since we do not need to compute the

PPVs for hubs over the entire graph.

On the other hand, FastPPV uses subgraphs around

the hubs as “building blocks” to extend tours for incre-

mental enhancement, in contrast to previous methods

which directly estimate the PPV on a subgraph around

the query node. Instead, we assemble subgraphs online

as a compact way of building up more tours during in-

cremental enhancement. Thus, queries can be processed

efficiently by precomputing and reusing popular build-

ing blocks.

3 Principle: Scheduled Approximation

In this section, we propose the general principle of a

“scheduled” PPV approximation method, which enables

incremental and accuracy-aware query processing.

Running example. As our motivating example, we

introduce a toy graph G = (V,E) in Fig. 1(a), where

V = {a, b, . . . , h} and E = {(a, b), (a, d), . . .}. To sim-

plify discussion, the example graph is unweighted and

contains no cycles, although our framework works for a

general graph with cycles.

Suppose the query node is a. By Eq. 1, ra the PPV

w.r.t. a captures the reachability from a to each node in

G. Consider the personalized PR score ra(c) for a spe-

cific node c (i.e., the reachability from a to c), which

can be computed by summing up the reachability of

7 tours, as illustrated in Fig. 1(b). On a large graph,

computing the reachability for all tours between each

pair of nodes would cause serious efficiency issues. For-

6 Fanwei Zhu et al.

(b) computation

(with teleporting prob. α = 0.15)
ar (c)

c

e

g

a

b

d

f

h

(a) Graph G

ar (c)

Tours (a to c) Reachability

t1: a → c R(t1) = 0.0255

t2: a → h → c R(t2) = 0.0216

t3: a → d → c R(t3) = 0.0108

t4: a → b → c R(t4) = 0.0072

t5: a → f → d → c R(t5) = 0.0046

t6: a → b→ d → c R(t6) = 0.0046

t7: a → f → g → d → c R(t7) = 0.0017

Fig. 1: PPV computation example.

tunately, we have observed two facts that motivate an

efficient PPV computation approach.

• Some tours are more important than others in PPV

computation. A tour with higher reachability (e.g.,

t1) will rank its destination node (e.g., c) highly by

contributing more to the computation of the final

score (e.g., ra(c)).

• Covering more tours in the computation would im-

prove the accuracy. For instance, if we handle more

tours from t1 to t7, the cumulative reachability would

be closer to the exact ra(c).

The above two observations lead to the key insights

of a scheduled approximation approach, with two com-

ponents in the following:

• Partitioning tours. Instead of treating all tours equally,

we first partition them into different tour sets ac-

cording to their importance w.r.t. the query node.

A partition of a full set of tours T is a set of dis-

joint subsets T 0, . . . , T η, where T = T 0 ∪ . . . ∪ T η
and T i ∩ T j = ∅,∀i 6= j.

• Prioritizing computations. Given a partition of tours

T = T 0∪. . .∪T η, we exploit the varying contribution

of different tour sets, and schedule them for a prior-

itized PPV approximation—the most important set

T 0 is traversed first for a fast estimate r̂T
0

q (i.e., the

aggregated reachability of tours in T 0 only), while

less important ones are handled later to improve the

accuracy incrementally. Note that we use r̂q to de-

note an estimated PPV to distinguish it from the

exact one rq.

To be concrete, consider the graph G in Fig. 1(a).

Suppose a is the query node and, for the purpose of

illustration, we magically have the reachability of each

tour at hand. Then, as Fig. 2 shows, we can partition

the tours starting from a, T = {t1, . . . , t20}, into some

(say three) disjoint tour sets with decreasing impor-

tance by their reachability range: T 0, T 1, T 2. Note that

Partitioning tours Prioritizing computation

Tours Sets
I. Computing

over T0

II. Computing

over T0 ∪ T1

III. Computing

over T0 ∪ T1 ∪ T 2

t9: a → b

t2: a → f

t10: a → d

t1: a → c

t11: a → h

t2: a → h → c

t12: a → f → g

t13: a → f → d

t14: a → f → g → d

t15: a → d → e

t3: a → d → c

t16: a → b→ d

t4: a → b → c

t17: a → b → e

t18: a → b → d → e

t6: a → b → d → c

t19: a → f → d →e

t20: a → f → g → d → e

t5: a → f → d → c

t8: a → f → g → d → c

T
0

T
1

T
2

high

reachability

medium

reachability

low

reachability

r̂
0

T
a

c 0.0579

d 0.0444

b 0.0255

f 0.0255

h 0.0255

e 0.0108

g 0.0108

arexact PPV

c 0.0471

d 0.0255

b 0.0255

f 0.0255

h 0.0255

c 0.0868

d 0.0522

b 0.0255

f 0.0255

h 0.0255

e 0.0234

g 0.0108

r̂
210

TTT
a

∪∪

r̂
10

TT
a

∪

Fig. 2: Scheduled approximation example.

in real scenarios, we do not have the reachability of each

tour beforehand; we will discuss a practical partitioning

strategy in Sect. 4.

Now, to prioritize computation, we initially consider

the most important set T 0 only for an estimated PPV

r̂T
0

a . According to r̂T
0

a , the most relevant nodes to a

(i.e., c) have already been identified correctly. Subse-

quently, when T 1 is added, we obtain an enhanced esti-

mate r̂T
0∪T 1

a , which ranks the top five nodes c, d, b, f, h

perfectly. Finally, when the tours in T 2 are also in-

cluded, all the tours starting from a are covered, achiev-

ing the exact PPV ra.

This example illustrates a well-scheduled PPV com-

putation process. First, T 0 is the top consideration since

through T 0 most of the nodes in G, in particular the

important ones, would be ranked. Next, T 1 and T 2 are

successively included to gradually improve our estima-

tion. Towards the concept of scheduled computation, we

propose an incremental query processing, which com-

putes PPVs in a progressive manner where more time

will render higher accuracy.

Incremental query processing. We estimate the PPV

through multiple iterations, with each iteration han-

dling an additional tour set, enhancing the overall ap-

proximation iteration by iteration.

More formally, given a partition of tours T = T 0 ∪
. . . ∪ T η with decreasing importance, in iteration-i, a

PPV increment r̂T
i

q is computed over the i-th impor-

tant tour set T i. For brevity, we also denote the in-

crement by r̂iq. The overall approximation is the sum-

mation of all PPV increments from all iteration so far.

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 7

That is, after iteration-k, we obtain an approximate

PPV r̂(k)
q :

r̂(k)
q = r̂T

0∪T 1∪...∪Tk
q =

k∑
i=0

r̂iq (3)

Note that in r̂(k)
q , the superscript (k) is enclosed in

parentheses to mean that it is cumulative from T 0 to

T k, while the superscript in each PPV increment r̂iq has

no parentheses.

Such an incremental process enables flexible trade-

off of efficiency and accuracy. As we process more iter-

ations, the accuracy of approximation is gradually en-

hanced and if all tour sets are processed, an exact PPV

is obtained. The reason is quite obvious. For a disjoint

partition T = T 0 ∪ . . . ∪ T η, in iteration-i, tours in T i

are included in the computation. Thus more iterations

will tackle more tour sets, and after iteration-η, each

tour in T is covered for exactly once. This property is

formalized by the following theorem.

Theorem 1 Given a query node q, let T be all tours

starting from q and T 0, . . . , T η be a partition of T . The

estimated PPV score of any node p ∈ V monotonically

enhances with more iterations and eventually equals the

exact one after iteration-η:

r̂(0)
q (p) ≤ r̂(1)

q (p) ≤ . . . ≤ r̂(η)
q (p) = rq(p) (4)

Generally, the graph can be cyclic, which contains a

countably infinite number of tours. Thus, the partition-

ing might result in an infinite number of tour sets (i.e.,

η →∞) such that we need infinite iterations to achieve

the exact PPV. However, we can expect an approxi-
mation which is arbitrarily accurate with sufficient it-

erations. In Sect. 4, given our specific partitioning and

prioritizing methods, we would derive an error bound

that is consistent with this expectation.

Accuracy-aware approximation. Due to the nature

of our incremental processing, after each iteration, we

can easily compute the L1 error of our estimation so

far, even without knowing the exact PPV rq. The L1

error after iteration-k is defined as follows:

ϕ(k) ,
∥∥∥rq − r̂(k)

q

∥∥∥
1

=
∑
p∈V

∣∣∣rq(p)− r̂(k)
q (p)

∣∣∣ (5)

From Theorem 1, we know rq(p) ≥ r̂(k)
q (p),∀p, q ∈

V,∀k ≤ η. Together with the fact that
∑
p∈V rq(p) = 1

(since rq is a probability distribution over V), Eq. 5 can

be conveniently re-expressed as follows:

ϕ(k) =
∑
p∈V

rq(p)−
∑
p∈V

r̂(k)
q (p) = 1−

∑
p∈V

r̂(k)
q (p) (6)

The above equation provides a simple way to cal-

culate ϕ(k) as the one’s complement of the L1 norm

of the current PPV estimate, even without the knowl-

edge of the final exact PPV. Thus, during online query

processing, we can measure the L1 error after each it-

eration to enable a user-controllable trade-off between

accuracy and time, e.g., by specifying an accuracy re-

quirement in terms of the L1 error, or a time limit for

query processing.

Furthermore, if we prioritize the tour sets appropri-

ately, we can ensure that earlier iterations would bring

in more improvement than later ones. Ideally, we should

order the tour sets by their importance, or equivalently

the sum of reachability of the constituent tours, i.e.,∑
t∈T0

R(t) ≥ . . . ≥ ∑
t∈Tη R(t), which means that∑

p∈V r̂0
q(p) ≥ . . . ≥ ∑p∈V r̂ηq (p). By Eq. 6 and 3, this

order will result in the largest reduction in L1 error

after iteration-0, followed by iteration-1 and 2, and so

on. Consequently, we can stop at an early iteration, yet

still get the “most significant portion” out of the exact

PPV. Formally, in Sect. 4, based on our actual parti-

tioning and prioritizing strategy, we will prove an error

bound that decreases exponentially as more iterations

are processed.

However, while the principle is straightforward, the

realization is challenging in two aspects:

• Challenge 1: how can we partition and prioritize the

tours? In other words, how can we measure the im-

portance of each tour? Naturally, we do not know the

reachability of each tour beforehand—PPV computa-

tion is our ultimate goal, and thus it is impractical to

partition the tours according to their reachability as

we did in the example. We need a simple and unified

metric, which can be efficiently applied to measure

the importance of tours and is universally effective

for different queries.

• Challenge 2: how can we efficiently compute each PPV

increment? Computing each r̂iq from scratch is not

practical since it is expensive to näıvely sum up the

reachability of all tours involved. In our previous ex-

ample in Fig. 2, we observe large overlaps between

tours in different sets. E.g., t12, t13, t14 in T 1 share

an edge a → f , which is a tour t2 in T 0. Thus, we

can take advantage of these overlaps to efficiently cal-

culate each r̂iq(p).

4 Realization: FastPPV

As the next step, we tackle the two challenges in real-

izing the basic principle in Sect. 3. We seek an effective

and simple partitioning-and-prioritizing metric, and an

efficient algorithm for computing PPV increments.

8 Fanwei Zhu et al.

To motivate both goals, let us take a deeper ex-

amination of our running example in Fig. 1. Observe

that some nodes, like d, have two desirable properties

for characterizing the importance of tours and enabling

efficient PPV computations, respectively.

First, Discriminating. With many out-neighbors, d

significantly decays the reachability of those tours pass-

ing through it, i.e., it has a high “decaying power” due

to Eq. 2. E.g., for two resembling tours (with only one

different node), t2 : a→ h→ c and t3 : a→ d→ c, the

reachability R(t3) is only 1/2 of R(t2) due to the high

decaying power of node d on t3.

Second, Sharing. As many tours pass through d, the

segments (a sequence of edges) around d may be shared

in different tours. E.g., the segment f → g → d is

shared by three tours starting from a as shown in Fig. 2.

We say that d is “popular.”

We refer to nodes with such properties as hub nodes,

because topologically they look like hubs in a network,

at the center of different connections. While the no-

tion of hubs has been explored previously [16,10,11],

we stress that our hubs serve dual unique purposes—as

a crucial response to the dual challenges raised earlier.

• Tour set partitioning. Hub nodes have high decaying

power to discriminate tour importance and thus is a

good criterion to partition tours (Challenge 1).

• PPV increment computation. Segments around hub

nodes are shared by different tours and thus can be

precomputed and reused to enable efficient computa-

tion (Challenge 2).

While hubs should possess the sharing and discrim-

inating properties, we leave the concrete hub selection
strategy to Sect. 5. For now, assuming a set of hubs are

already selected, we will present an effective tour parti-

tion scheme (leveraging the discriminating property of

hubs) in Sect. 4.1, and an efficient PPV computation

algorithm (leveraging the sharing property of hubs) in

Sect. 4.2.

4.1 Tour Partitioning and Prioritizing

As the first challenge of scheduled PPV approximation,

we need a partition scheme which is effective in discrim-

inating tour importance and can be efficiently applied

on the fly.

To motivate, consider our example graph G, assum-

ing H = {b, d, f} is the hub set for G. For intuition, we

make an analogy that G is a bus transportation net-

work, in which each node is a city and each edge is a bus

route connecting two cities. To facilitate long distance

transportation, some particular cities (i.e., hub nodes

Tours Sets Priority

t9: a → b

Iteration-0

t2: a → f

t10: a → d

t1: a → c

t11: a → h

t2: a → h → c

t16: a → b→ d

Iteration-1

t4: a → b→ c

t12: a → f → g

t13: a → f → d

t14: a → f → g → d

t15: a → d→ e

t3: a → d→ c

t18: a → b→ d→ e

Iteration-2

t6: a → b→ d → c

t19: a → f → d→e

t20: a → f → g → d→ e

t5: a → f→ d→ c

t8: a → f→ g → d→c

(a) Graph with hub nodes

(Bus route network) (b) Partition & prioritize by hub length

Hub nodes

(transfer points) T
2

T
1

f

d

b

g

e

c

h

a

∀ t ∊ T 0:

Lh (t) = 0

∀ t ∊ T 1:

Lh (t) = 1

∀ t ∊ T 2:

Lh (t) = 2

T
0

Fig. 3: Hub length-based tour partitioning and prioritizing.

in our approach) where multiple bus lines pass through,

marked in a double circle, are selected as transfer points,

as Fig. 3(a) shows.

Now suppose a passenger is planning a trip from

city a to c. Which route is most likely to be chosen?

Apparently, taking a direct bus route (which does not

pass through any transfer point) between a and c, i.e.,

a→ c or a→ h→ c (here h is merely a “stop-over”, not

a transfer point) is most preferred, followed by making

one transfer (e.g., a → d → c), and then two transfers

(e.g., a→ f → d→ c). Note that, when writing a tour,

we underscore a node to stress that it is a transfer point

(or hub node).

Intuitively, just as people dislike routes that need

many transfers, it is less likely to follow the tours con-

taining more hub nodes in random walks, i.e., these

tours are less important in our prioritized PPV compu-

tation. More formally, each hub node would substan-

tially decay the reachability of a tour passing through

it due to its large out-degree. The more hubs a tour

passing through, the less important the tour is.

Partitioning and prioritizing by hub length. We

formally quantify the importance of a tour by the num-

ber of hubs it passes through, which we call hub length.

Definition 1 (Hub Length) Given a set of hub nodes

H, for any tour t, the hub length of t, denoted by Lh(t),

is the number of hub nodes in t, excluding the starting

and ending nodes.

Given this hub length metric, partitioning tours is

straightforward. Consider the example graph with H =

{b, d, f} in Fig. 3(a). The tours starting from a are par-

titioned into three sets: T 0, T 1 and T 2, with each con-

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 9

taining tours of a distinct hub length—the hub length

of every tour is 0 in T 0, 1 in T 1 and 2 inT 2, as shown in

Fig. 3(b). These tour sets form a valid partition—they

are pairwise disjoint and cover all tours starting from a.

Furthermore, the importance of tours in different sets

are decreasing from T 0 to T 2, which naturally shows a

desired order for prioritized computation.

More generally, given a set of hub nodes, for a query

node q, we can partition all the tours rooted at q into

η sets T = T 0 ∪ T 1 ∪ . . . ∪ T η such that, for i ∈ [0, η],

T i = {t | t starts at q ∧ Lh(t) = i}), where η is the

maximal hub length of all tours in T . Given such a

partition, for a prioritized incremental computation, to

return better results earlier, as Sect. 3 explained, the

sets with a shorter hub length are handled earlier, in the

order T 0 to T η. As Sect. 3 also explained, for a cyclic

graph, η can be infinite. However, tours with large hub

length contribute trivially and, thus, can be omitted for

a good approximation.

Error bound. Based on our partitioning and priori-

tizing strategy, we further exploit the L1 error of our

incremental approximation discussed in Sect. 3. In par-

ticular, we formally prove a bound for the L1 error in

each iteration, which further implies two theoretically

desirable properties. The proof of the theorem can be

found in Appendix A.

Theorem 2 After iteration-k, the L1 error ϕ(k) as de-

fined in Eq. 5 satisfies the following bound:

ϕ(k) ≤ (1− α)k+2 (7)

This bound exhibits two desirable properties. First,

since 1 − α < 1, limk→∞ ϕ(k) = 0. Second, the rate

of ϕ(k) approaching zero is exponential as k grows. In

other words, an earlier iteration contributes exponen-

tially more than a later one. Thus, we can stop early

yet still obtain a good estimation.

As an example, for a typical α = 0.15 [19], we have

ϕ(10) ≤ 0.143, ϕ(20) ≤ 0.028 and ϕ(30) ≤ 0.006, which

diminishes exponentially as k increases. We note that,

as the proof of Theorem 2 builds upon, we bound the

error of the overall reachability of ∪ki=0T
i by that of

∪k+1
i=0 S

i. In practice, ∪ki=0T
i contains many more tours

than ∪k+1
i=0 S

i, which makes the error to converge even

faster. Our experiments in Sect. 7 show that as few as

three iterations yield a very accurate PPV.

4.2 Efficient PPV Increment Computation

We next tackle the second challenge—to efficiently com-

pute the PPV increment r̂iq in iteration-i, which aggre-

gates the reachability of tours of hub length i. Towards

its efficient realization, we analyze the structure of tours

in aggregation and develop a tour assembly model– in-

terestingly, since tours are built from segments, the ag-

gregation of tours into PPV amount to the aggrega-

tion of PPVs of the constituent segments around hubs.

Next, we propose the sharing and reusing of such “hub-

segment PPVs” in aggregation and, the “overlapping”

of aggregations in different rounds, to enable an efficient

PPV-increment computation.

4.2.1 Structured Aggregation: Tour Assembly Model

To enable efficient computation of r̂iq, we develop a tour

assembly model to aggregate the similar segments in

different tours, so that the overall reachability can be

aggregated by such structured components rather than

each individual tour.

Recall the bus transportation analogy in Sect. 4.1

(Fig. 3(a)). Consider the possible itineraries with two

transfers from a to c– t5 : a→ f → d→ c, t6 : a→ b→
d→ c and t7 : a→ f → g → d→ c. We observe that all

these itineraries can be constructed by three “direct bus

routes”: one from the source a and two from subsequent

transfer points. E.g., t7 is built by a→ f (a direct route

from a), and two direct routes f → g → d and d → c

from transfer points f and d respectively.

Our r̂iq computation shares the same insight with

this analogy of building itineraries. For a query node

q, by viewing each tour from q as an itinerary start-

ing at q and going through hubs as making transfers,

we can “assemble” the reachability of any tour by com-

bining the reachability of a direct segment (i.e., tours

passing through no hubs) from q to its nearest hub

node and then several direct segments from each hub

on the tour. Specifically, let’s examine the tours just

mentioned (t5, t6, t7). For each tour, we can calculate

its reachability by assembling three direct segments as

follows:

R(t5) =
1

α2
·R(a→ f) ·R(f → d) ·R(d→ c)

R(t6) =
1

α2
·R(a→ b) ·R(b→ d) ·R(d→ c)

R(t7) =
1

α2
·R(a→ f) ·R(f → g → d) ·R(d→ c)

Note that by the reachability definition (Eq. 2), at

the end of a segment, the random surfer would stop

with a probability α. Thus, to continue the tour, we

need to compensate a probability α at each “transfer,”

i.e., the 1
α2 term in our two-transfer example above.

With such an “assembly” of individual reachabili-

ties, we now build a systematic understanding of as-

sembling r̂iq(p). As an example, we will consider the

above tours from a to c, to assemble r̂2
a(c). The result

10 Fanwei Zhu et al.

can be derived, step by step, as Eq. 8 shows.

r̂2
a(c) , R(t5) +R(t6) +R(t7)

=
(
R(t5) +R(t7)

)
+R(t6)

=1 1

α2
·̂r0
a(f) ·̂r0

f (d) ·̂r0
d(c) +

1

α2
·̂r0
a(b) ·̂r0

b(d) ·̂r0
d(c)

=2 1

α2
·
∑

h2∈H′(h1)

∑
h1∈H′(a)

r̂0
a(h1) · r̂0

h1
(h2) · r̂0

h2
(c) (8)

To begin with, as different tours may share the same

hubs (recall the “sharing” property), we wonder if we

can first aggregate such tours to factor out their com-

mon segments? Let’s re-examine the tours t5, t6, and

t7. As Fig. 4 shows, t5 and t7 share the same hubs f ,

d. Thus, if we merge them at each hub node, we can

aggregate the reachability of individual segments in dif-

ferent tours (e.g., R(f d) in t5, R(f g d) in t7)

into an overall reachability between the ending nodes

(e.g., r̂0
f (d)). We can transform t6 similarly, since it is

segmented by another set of hubs—all by itself. This

assembling is illustrated in step-1 of Eq. 8.

More generally, as we observed, aggregating those

tours with the same hubs is effectively aggregating di-

rect segments between hubs. This will prove to be use-

ful, since we have now abstracted the aggregation of

tours in terms of the set of hubs they pass through (in

this case, from a to c through {f, d} or {b, d}).
Further, to aggregate these “hub-abstracted” tours,

we wonder if they can be enumerated in a systematic

order. From the result of step 1, we observe that even

the tours segmented by different hubs can be generated

by a same two-level expansion pattern: a h1 h2
c where h1 is the first-level hub (e.g., f and d) to be

reached from a, and h2 is any hub (e.g., d) to be reached

at the second level (from h1). To emphasize this level-

by-level property, we refer to the first-level hubs h1 as

the neighboring hubs of the starting node a, denoted

H′(a), and similarly, the second-level hubs are referred

as the neighboring hubs of h1, i.e., H′(h1). Therefore,

to aggregate every tour in the form a h1 h2 c,

we further merge the neighboring hubs H′(hi) at each

level i as step 2 of Eq. 8 shows.

Overall, with our tour assembly model, we can trans-

form the aggregation of tours into the aggregation of in-

termediate segments between hubs at each level. Specif-

ically, by merging the segments from a to the first-level

hubs (e.g., f and d), we gather the tours in the “neigh-

borhood” of a (i.e., tours in T 0) to form a prime sub-

graph which is rooted at a and bordered by h1’s, de-

noted G′(a). We call the aggregated reachability of the

constituent tours in G′(a) the prime PPV of a, denoted

r̂0
a. Similarly, merging tour segments from h1 to the

second-level hubs, we form the prime subgraphs of h1

(e.g., G′(f) and G′(d)).

Definition 2 (Prime Subgraph and Prime PPV)

Given a graph G and a set of hub nodes H, for any

node v,

• The prime subgraph G′(v) of v consists of all the

nodes and edges in T 0, the tours starting at v with

Lh(t) = 0; and the neighboring hubs of v, H′(v), can

also be referred as the border hub nodes of G′(v).

• The reachability from v to each node through all

tours in G′(v) forms the prime PPV of v, i.e., r̂0
v.

In general, we can compute r̂iq(p), the reachability

between q and p over tour set T i by assembling r̂0
q and

the prime PPVs of up to i-th level hubs, as formalized

in Theorem 3. The essence of this theorem boils down to

the Chapman-Kolmogorov equation [20], which relates

a joint probability distribution with the combination of

a set of transition probabilities.

Theorem 3 Let q be the query node, H be a set of

hub nodes in graph G. For any node p, the personalized

PR score estimated over tours of hub length i can be

constructed as:

r̂iq(p) =

1

αi
·

∑
hi∈H′(hi−1)

· · ·
∑

h1∈H′(q)
r̂0
q(h1) · · · r̂0

hi−1
(hi) · r̂0

hi(p) (9)

4.2.2 Computing with Prefixes and Building Blocks

By the tour assembly model discussed in Sect. 4.2.1, we

are able to assemble a PPV increment by structured

building blocks: the prime PPVs of hub nodes. We will
now exploit the common substructures between PPV

increments (calculated in successive iterations) for effi-

cient computation.

To motivate, we rewrite Eq. 8 to connect r̂2
a(c) with

the preceding PPV increments. To better illustrate this

connection, we represent the border hubs in terms of

their hub length, e.g., h1 ∈ H′(q) is explicitly repre-

sented as Lh(a h1) = 1. Then, we rearrange and

isolate the terms related to h1 as an inner summation,

which can be substituted with r̂1
a(h2) (by Theorem 3),

as follows:

r̂2a(c)

=
1

α
·

∑
h2∈H,Lh(a h2)=1

1

α
·

∑
h1∈H,Lh(a h1)=0

r̂0a(h1)·r̂0h1
(h2)

·r̂0h2
(c)

=
1

α
·

∑
h2∈H,Lh(a h2)=1

r̂1a(h2) · r̂0h2
(c) (10)

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 11

a f d c

a f d cg

a b d c

a f d

g

c

a b d c

Step 1

a

f

b

g

d c

()R a f→ ()R f d→ ()R d c→

()R a f→ ()R f g d→ → ()R d c→

()R a b→ ()R b d→ ()R d c→

t5:

t7:

t6:

Step 2

)(ˆ
0 far)(ˆ

0 dfr)(ˆ
0 cdr

)(ˆ
0 bar)(ˆ

0 dbr)(ˆ
0 cdr

h1 ∊H ’(a)

h2 ∊H ’(h1)

Fig. 4: Tour assembly example, corresponding to the two steps in Eq. 8.

Basically, this transformation enables the efficient

computation of PPV increments. As an example, to

compute PPV increment-2 r̂2
a(c), we do not need to

assemble the prime PPVs r̂0
a(h1), r̂0

h1
(h2) and r̂0

h2
(c)

from scratch. Rather, it can be simply built from PPV

increment-1 r̂1
a(h2) and a specific PPV r̂0

h2
(c) involved

in iteration-2. Likewise, r̂1
a(h2) itself can be assembled

by PPV increment-0 r̂0
a(h1) and a specific PPV r̂0

h1
(h2),

as illustrated in the inner summation of the first line in

Eq. 10.

Formally, in Theorem 4 we present a general result

by recursively expanding Eq. 9 for each iteration i. For

any r̂iq (i > 0), we can reuse r̂i−1
q computed over T i−1,

directly assembling it with the prime PPVs of the i-th

level hub nodes in T i, i.e., r̂0
hi(p). The proof mirrors

the above derivation of Eq. 10.

Theorem 4 Let q be the query node, H be a set of hub

nodes in graph G. For any node p, the personalized PR

score estimated over T i can be computed as:

r̂iq(p) =
1

α
·

∑
hi∈H,Lh(q hi)=i−1

r̂i−1
q (hi) · r̂0

hi(p) (11)

In summary, Theorem 4 exploits the shared sub-

structures both within and across iterations, entailing

two crucial aspects for speeding up computation:

• Reusing Prefix Tours. The PPV increment-i or r̂iq(p),

computed over tours in T i, can be simply extended

from its prefix r̂i−1
q (hi), which is already computed in

r̂i−1
q , the PPV increment of the last iteration. Thus,

the incremental PPV enhancement can be efficiently

realized by recursively reusing the PPV increments

in an earlier iteration to construct an enhanced esti-

mation.

• Precomputing Building Blocks. The extension beyond

the prefix is r̂0
hi(p), the prime PPV of hub hi, which

is independent of the query q. Thus, to enable fast

online computation, we can precompute these query-

independent prime PPVs (i.e., prime PPV of each

hub) and use them as building blocks to construct

any PPV increment on the fly.

5 Hub Nodes Selection

As discussed in Sect. 4, the realization of FastPPV re-

lies on a set of hub nodes to partition tours and priori-

tize computation. Different hub nodes result in different

building blocks, and thus ultimately impact the perfor-

mance of FastPPV. While we previously assumed that

the set of hubs H are given, we now tackle the issue of

selecting the hubs.

To select a set of hubs, we need to decide which

nodes shall be identified as hubs, and how many hubs

shall be selected for a given graph. Since the number

of hubs |H| determines the trade-off between the of-

fline precomputation and online processing, we leave

its discussion to Sect. 6 when presenting the overall

framework of FastPPV. In this section, we focus on the

strategy of selecting hubs, given the number of hubs

|H| as input. In particular, we will first introduce a

conceptual model for hub selection, followed by specific

realizations of this model.

5.1 Conceptual Hub Selection Model

As FastPPV depends on a set of hubs to partition the
tours by their hub length, and to accelerate computa-

tion by sharing and reusing hub segments, our goal here

is to choose the most useful set of hubs. Formally, given

a graph G = (V,E), a query distribution Q which in-

dicates the probability that each node in V would be

queried, and the number of hubs |H| as input, our goal

is to select |H| nodes from V such that H is most useful

for FastPPV to answer the queries distributed accord-

ing to Q. Mathematically, we select hubs as follows,

H∗ = arg max
H⊆V

U(H|Q), subject to a given |H|, (12)

where U(H|Q) denotes the usefulness of the hubs in H

w.r.t. Q.

Greedy hub selection. However, to find the opti-

mal solution of Eq. 12, the order of the search space

is
(|V |
|H|
)
, which is prohibitively high. Thus, we propose

to approximate the optimization with a typical greedy

approach—we iteratively construct the hub set, where

12 Fanwei Zhu et al.

Algorithm 1: GreedyHubSelection

Input: a graph G = (V,E); query distribution Q,
number of hubs |H|

Output: a set of hubs H

1 H0 ← ∅;
2 for k ← 0 to |H| − 1 do
3 hk+1 ← argmaxh∈V \Hk

U(h|Hk, Q);

4 Hk+1 ← Hk ∪ {hk+1}
5 end
6 return H|H|.

in each step we choose a hub node that brings maxi-

mal immediate benefit. Specifically, given some already

selected hubs Hk in k ∈ {0, . . . , |H| − 1} steps, in step

k + 1 we pick the next hub node hk+1 such that

hk+1 = arg max
h∈V \Hk

U(h|Hk, Q), (13)

where U(h|Hk, Q) denotes the marginal (or additional)

usefulness of h w.r.t. Hk:

U(h|Hk, Q) , U(Hk ∪ {h}|Q)− U(Hk|Q). (14)

The greedy hub selection procedure is sketched in

Algorithm 1. It has been established that [18] the greedy

algorithm gives a 1− 1
e approximation if the objective

function U(H|Q) is a monotone submodular function,

i.e., for any h /∈ Hj and Hi ⊆ Hj ,

U(h|Hi, Q) ≥ U(h|Hj , Q) ≥ 0. (15)

As we shall see later, our choice of U(h|Hk, Q) would

satisfy the above requirement.

Marginal usefulness. Next, we discuss the design prin-

ciples of U(h|Hk, Q), the marginal usefulness of h w.r.t.

some existing hubs Hk. Let us first consider the two cru-

cial roles played by hub nodes as discussed in Sect. 3:

1) decaying the importance of tours for discriminat-

ing tour partitions; and 2) segmenting tours for shar-

ing computation during query processing. To facilitate

these two roles, it is natural to integrate the following

two desirable properties into U(h|Hk, Q).

• Sharing. When processing different queries, different

hubs would be utilized to segment tours for sharing.

The more likely a hub can be utilized by queries, the

better sharing it enables. Thus, given a query distri-

bution Q, we capture the sharing property of a candi-

date h as the probability that it would be utilized to

process queries in Q, which we denote P (h|Q). Note

that the sharing property depends on Q only, which

is not affected by existing hubs Hk.

• Discriminating. When a candidate h is utilized to

process some query, it has the ability to decay the

importance of tours passing through itself (h), so that

we can schedule the approximation according to the

hub-length metric. However, since these tours may

have already been decayed by existing hubs Hk, how

discriminating h is will depend on Hk. Specifically, as

the tours passing through h are decayed by more hubs

in Hk, the marginal (or additional) discriminating

power that h can offer diminishes. Thus, we capture

the discriminating property of a candidate h in the

context of already chosen hubs Hk, which we denote

D(h|Hk). Note that, given h has been utilized during

query processing (which is determined by the sharing

property), its discriminating property depends on Hk

only, independent of the query distribution Q.

To integrate these two properties, given existing hubs

Hk and a query distribution Q, we define the marginal

usefulness of a candidate h as the expected marginal

discriminating power utilized by Q:

U(h|Hk, Q) , P (h|Q) ·D(h|Hk) (16)

Naturally, we should design D(h|Hk) such that it

is non-negative. Furthermore, due to the diminishing

property of D(h|Hk), it is easy to verify that U(h|Q) is

monotone submodular. Thus, our greedy algorithms is

guaranteed to achieve a 1− 1
e approximation.

To realize the above conceptual model of marginal

usefulness, we will explore several strategies to estimate

P (h|Q) and D(h|Hk). First, Sect. 5.2 describes a näıve

strategy that is oblivious of Q and Hk, i.e., P (h|Q) ≈
P (h) and D(h|Hk) ≈ D(h). Second, Sect. 5.3 considers

the effect of Q on the sharing property, thus estimating

P (h|Q) in a better way. Third, Sect. 5.4 accounts for

the effect of Hk on the discriminating property, thus

estimating D(h|Hk, Q) in a better way.

5.2 Näıve Hub Selection

To realize the conceptual model of marginal usefulness

(Eq. 16), we need to estimate P (h|Q) and D(h|Hk).

We develop a näıve method by making a simplifying

assumption—we do not know about Q and Hk.

First, suppose the query distribution Q is unknown.

That is, query nodes are arbitrarily chosen from the

graph G = (V,E). Thus, the probability that a can-

didate hub h will be utilized by a query measures the

“popularity” of h on the entire graph. It is common

to quantify such popularity by the PageRank score, as

applied in a number of previous works [19,16,10]:

P (h|Q) ≈ P (h) , PageRank(h). (17)

Note that to quantify the popularity of h, simpler

alternatives exist, such as the in-degree of h. However,

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 13

PageRank is more effective in capturing the “global”

popularity of a node, while the in-degree of a node

only reflects its “local” popularity attributed by its in-

neighbors. In addition, the cost of PageRank computa-

tion is not a major concern, since we only need to run it

once offline, and its computation time is actually dom-

inated by the other precomputation steps in the offline

stage (see Sect. 6).

Second, suppose the existing hubs Hk are unknown.

In other words, we only assess the discriminating power

based on the candidate h itself, ignoring the effect of

existing hubs. Recall that based on the definition of P-

inverse distance (Eq. 2), the reachability (importance)

of a tour decreases to a factor of 1
|Out(h)| when passing

through a node h. That is, given our hub-length based

partitioning, a hub node with a higher out-degree can

better discriminate the tour partitions. Thus, we use the

out-degree of h to quantify its discriminating power:

D(h|Hk) ≈ D(h) , |Out(h)|. (18)

Incorporating both factors, we obtain the following

näıve strategy to approximate the marginal usefulness

of a candidate hub h:

U(h|Hk, Q) ≈ PageRank(h) · |Out(h)|. (19)

5.3 Query Distribution-Aware Hub Selection

We now consider the effect of the query distribution on

the sharing property, i.e., P (h|Q).

Recall that in the näıve strategy, we assumed Q is

unknown and queries can be arbitrarily chosen from

the graph. However, in real applications, queries are

not arbitrary—some nodes are more likely to be chosen

as queries than others. For example, previous statistics

[25] shows that out of the 154 million queries collected

from the query log of AltaVista, 13.6% of them occur

more than 3 times, and the maximal query frequency

is as high as 1.5 million. Thus, the sharing property

of a candidate h, captured by the conditional proba-

bility P (h|Q) in the conceptual model (Eq. 16), should

account for the query distribution Q, simply because

different queries will utilize different hubs. In the fol-

lowing, we assume that Q is known, which can be pro-

vided by domain experts, or estimated based on a his-

tory query log.

To compute P (h|Q) based on a query distribution

Q, we first rewrite it as follows.

P (h|Q) =
∑
q∈V

P (h, q|Q)

=
∑
q∈V

P (h|q,Q)P (q|Q)

=
∑
q∈V

P (h|q)P (q|Q) (20)

Now, P (h|Q), the probability that h would be uti-

lized by the queries, should be computed over P (q|Q),

the probability of q in Q, as well as P (h|q), the popular-

ity of h w.r.t. q. While P (q|Q) is directly given by the

query distribution, P (h|q) can be quantified by rq(h)

(the personalized PageRank score of h w.r.t. q):

P (h|Q) ,
∑
q∈V

rq(h)P (q|Q) (21)

Furthermore, according to the Linearity Theorem

[16,12,10], given a particular query distributionQ, Eq. 21

can be computed offline using just one application of

the power-iteration method, whose cost is insignificant

as compared to other precomputation steps in the of-

fline stage (see Sect. 6).

Overall, Eq. 21 implies that more frequent queries

in Q would have a higher weight in determining the

sharing property of the hubs, which is quite intuitive.

5.4 Community-based Hub Selection

Now we investigate the impact of existing hubs Hk on

hub selection, which affects the discriminating property
of a candidate h, i.e., D(h|Hk).

Discriminating property modeling. Recall that in

the conceptual model, we define D(h|Hk) as the addi-

tional power (beyond Hk) in decaying Th, tours passing

through h. Note that, as FastPPV only handles those

important tours for approximation, when exploiting the

decaying power of h, we also ignore those insignificant

tours. Thus, in the following discussion, Th is conceptu-

ally a set of important tours (with reachability greater

than some abandon threshold) that pass through h.

Apart from the inherent decaying power of h (quan-

tified as |Out(h)| as in Sect. 5.2), there are two other

factors affecting the actual discriminating ability of h.

First, the overall importance (or reachability) of the

tours in Th, denoted by I(Th). As D(h|Hk) is defined

in terms of the importance decayed by h, the more im-

portant Th is, the larger amount of importance can be

decayed by h. For example, consider two hub candidates

h1 and h2 with the same out-degree, suppose I(Th1) is

14 Fanwei Zhu et al.

twice of I(Th2), then the importance of Th1 decayed by

h1, i.e., I(Th1
)·(1− 1

|Out(h1)|), is also twice of the impor-

tance of Th2
decayed by h2, i.e., I(Th2

) · (1− 1
|Out(h2)|).

Thus, D(h|Hk) is proportional to I(Th).

Second, the number of already chosen hubs in Th,

denoted by |Hk(Th)|. Since those hubs selected in the

previous k steps have already decayed I(Th) to some ex-

tent, if there exist a larger number of hubs in Hk to de-

cay Th, then the additional importance further decayed

by h would be a smaller amount. Thus, D(h|Hk) is in-

versely proportional to |Hk(Th)|. In other words, this

factor captures the diminishing nature of the marginal

discriminating power.

Integrating the above two factors, the marginal dis-

criminating power of h can be modeled as follows:

D(h|Hk) ∝ I(Th)

|Hk(Th)| . (22)

We can explain I(Th)
|Hk(Th)| as the average importance that

can be decayed by a hub in Th, i.e., per-hub importance.

Thus, intuitively, h would be more useful if such impor-

tance in Th is higher. Such per tour importance can be

further incorporated with h’s inherent discriminating

power (i.e., |Out(h)|) to form a complete measure of

D(h|Hk):

D(h|Hk) =
I(Th)

|Hk(Th)| |Out(h)|. (23)

Communities for efficient approximation. Now,

we exploit the efficient computation of I(Th)
|Hk(Th)| . Basi-

cally, as I(Th) is defined as the overall reachability over

all tours in Th, i.e., I(Th) =
∑
t∈Th R(t), it is not trivial

to compute I(Th)
|Hk(Th)| for a specific h. Moreover, recall the

greedy algorithm for hub selection, at each step we need

to compute a I(Th)
|Hk(Th)| for every hub candidate h ∈ G

(i.e., every node in G \Hk), which makes the problem

even more challenging.

To tackle this challenge, we observe that there ex-

ists a significant overlap between the tours of closely-

connected nodes. These tours “overlap” by sharing sim-

ilar edges. For example, in our toy graph (Fig. 1), f →
d→ c highly overlaps with g → d→ c as only the start-

ing node is different in these two tours. Now consider

two hub candidates, h1 and h2, whose tours overlap

with each other. As two tours overlap when they pass

through a similar set of nodes, we can claim that Th1

shares a lot of nodes with Th2
, thus |Hk(Th1

)| is sim-

ilar to |Hk(Th2
)|. Furthermore, I(Th1

) is also similar

to I(Th2) because of the high overlap between Th1 and

Th2 . In conclusion, I(Th)
|Hk(Th)| is similar for hubs that have

overlapping tours.

This observation motivates an efficient algorithm to

approximate D(h|Hk) for all hub candidates. The prin-

ciple is to aggregate a set of hub candidates Sh that

have highly overlapped tour sets, and identify a shared

tour set TSh to approximate their tour sets, so that for

any h ∈ Sh, its marginal discriminating ability can be

approximated over the shared tour set instead of each

individual tour set Th,i.e., D(h|Hk) ≈ I(TSh)

|Hk(TSh)| , .

Specifically, a reasonable aggregation and approxi-

mation should have two properties:

• There is a large overlap in the tours of the nodes in

Sh, so that I(Th)
|Hk(Th)| is similar for any h ∈ Sh.

• For each specific h ∈ Sh, the shared tour set TSh is

a good approximation of Th, thus it is reasonable to

approximate I(Th)
|Hk(Th)| as

I(TSh)

|Hk(TSh)| .

Such desired properties can be observed in the com-

munities that naturally exist on a graph. A commu-

nity is a group of nodes that densely connects with

each other within the community, while sparsely con-

nects with nodes in other communities [9]. As nodes are

densely intra-linked within the communities, the tours

of nodes in the same community Ci are significantly

overlapped (satisfying property 1). On the other hand,

for an arbitrary node in Ci, as it is sparsely connected

with nodes outside Ci, tours within Ci are a good ap-

proximate of its complete tour set. Thus, for each node

in the community, its tour set can be reasonably ap-

proximated by the tours in Ci (satisfying property 2).

Therefore, we can leverage the community structure

of a graph, which can be observed in most of the real

graphs as discussed in [9], to obtain a good aggrega-

tion (or partition) of similar nodes (i.e., nodes with

large overlapped tours); furthermore, each community

can serve as the common tour set of nodes in it.

Formally, given a set of communities C = {C1, . . . , Cn}
identified on G, the marginal discriminating ability of

h in community Ci can be approximated on TCi , for-

malized as follows:

D(h|Hk) ≈ I(TCi)

|Hk(TCi)|
|Out(h)|

(24)

Model simplification. We take a further step to sim-

plify Eq. 24 so that it can be more efficiently computed.

First, we establish that for an arbitrary community

Ci, its overall importance I(TCi) can be approximated

as |VCi |, the number of nodes in Ci, as formalized in

Theorem 5. The proof is presented in Appendix A.

Theorem 5 Let |VCi | be the number of nodes in com-

munity Ci, then I(TCi) ≈ |VCi |.

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 15

Then, the above measure in Eq. 24 can further be sim-

plified as:

D(h|Hk) ≈ |VCh |
|Hk(TCh)| |Out(h)|

(25)

The simplified model provides an efficient way to

compute D(h|Hk) based on the number of existing hubs

in each community. As a result, we can expect a more

even distribution of hubs on the graph, among the com-

munities, so that it is easy for queries in any region of

the graph to find useful hubs to assemble their tours,

accelerating the computation of FastPPV.

Early-termination algorithm for community based

hub selection. Finally, let’s consider our greedy hub

selection framework (Algorithm 1). Now, the marginal

usefulness U(h|Hk, Q) of a hub candidate h is calculated

as U(h|Hk, Q) =
|VCh |

|Hk(TCh)| · |Out(h)| · PageRank(h).

Since |Hk(TCh)| changes during the iterations, theo-

retically, we need to recalculate U(h|Hk, Q) for every

remaining node to find the one with maximal value,

which is not efficient for large-scale graphs. Thus, we

propose an early-termination algorithm to speed up

the process. The main idea is that instead of calculat-

ing U(h|Hk, Q) for every remaining node, we first rank

them by roughly estimating their marginal usefulness,

then starting from the most promising node, we only

need to iterate through a few top candidates to find

the best hub. Thus, the algorithm can terminate early

without iterating through all the nodes. The algorithm

is sketched in Algorithm 2.

First, all the nodes are sorted by the partial scores

that are constant through iterations (Line 1-5), then at

each selection, we compute the changing part D(h|Hk)

from the node with the highest value, and keep track

of the maximal D(h|Hk) we have encountered (Line

10-17). Once we see a node whose |VCh ||Out(h)| score

divided by the minimal number of selected hubs in

each community is smaller than the current maximal

D(h|Hk) tracked, we can terminate at this node, since

subsequent nodes (with smaller constant scores) can

never exceeds the current maximal score (Line 18-20).

The node with the maximal D(h|Hk) we have tracked

so far will be selected as hub in this iteration.

Community detection methods. As the first step

in FastPPV-C, we need to detect communities from a

graph. Community detection or graph clustering is an

orthogonal problem to our hub selection strategy, and

there exists abundant literature [8] on it. Here we adopt

the technique in [24] which are scalable to very large

graphs, and briefly explain it below.

Algorithm 2: CommunityBasedHubSelection

Input: a graph G =< V,E >; n communities
C = {C1, ...Cn}, number of hubs |H|

Output: a set of hubs H

1 foreach v ∈ V do
2 Add v to node list N [];
3 Add |VCv

| · PageRank(v) ·Out(v) to value list V [];

4 end
5 Rank N [] and V [] in the ascending order of
|VCv | · PageRank(v) ·Out(v);

6 H0 ← ∅;
7 for k ← 0 to |H| − 1 do
8 maxD ← 0;
9 minH ←Min(|HC1

|, . . . , |HCn
|);

10 for i← 0 to N.length do
11 if N [i] ∈ Hk then
12 Continue;
13 end
14 if D(N [i]|Hk) ≥ maxD then
15 maxD ← D(N [i]|Hk);
16 hk+1 ← N [i];

17 end

18 if N [i]
minH ≤ maxD then

19 break;
20 end

21 end
22 Hk+1 ← Hk ∪ {hk+1};
23 end
24 return H|H|.

Specifically, given the number of communities |C| as

input, |C| “anchor” nodes are chosen randomly from the

graph. Every other node in the graph is assigned to its

“nearest” anchor in terms of their personalized PageR-

ank w.r.t. the anchor. It has been shown that person-

alized PageRank exhibits a good clustering quality [1].

Hence, we can obtain good communities even though

the anchors are selected randomly, since every node in

a community can become the anchor.

6 Overall Framework

To materialize the computation in Eq. 11, our overall

framework consists of two phases: 1) Offline precompu-

tation where we precompute the building blocks; 2) On-

line query processing where we reuse the building blocks

and prefix tours to incrementally compute a gradually

more accurate PPV for any query.

To develop the two phases, we first treat the graph

as residing in the main memory, a typical assumption

adopted in recent works such as [10,11]. Next, to han-

dle graphs that are too large for the main memory, we

propose a disk-based implementation for FastPPV.

16 Fanwei Zhu et al.

6.1 Offline Precomputation

In the offline phase, we need to compute the building

blocks, i.e., prime PPVs for a set of hub nodes H over

G. These building blocks are then stored in an index,

which will be used in online query processing.

Given a graph G and number of hubs |H| as input,

we first select hubs according to their expected utility

(see Sect. 4). Next, for each h ∈ H, we compute its

prime PPV r̂0
h using the standard power-iteration al-

gorithm over its corresponding prime subgraph, which

is feasible as prime subgraphs are many orders smaller

than the entire graph. The prime subgraph can be iden-

tified using a depth-first search starting from the query

node. During the search, we backtrack when we hit a

hub node (which are the border hub nodes for this prime

subgraph), or a “faraway” node whose reachability to

the query node is smaller than a threshold ε (say 10−8).

The above steps are summarized in Algorithm 2. In

particular, the precomputed prime PPVs or building

blocks are stored in a PPV index on disk, which can be

loaded into the main memory as needed during online

query processing.

Time complexity. As hubs essentially form the bor-

ders of prime subgraphs, we can informally view a graph

as being divided into prime subgraphs at the hub nodes.

Intuitively, more hubs result in smaller prime subgraphs.

As each hub node blocks an entire search subtree dur-

ing the depth-first search for the prime subgraph, the

size of a prime subgraph decreases exponentially in |H|.
Hence, it is reasonable to assume that on average a

prime subgraph is smaller than O(1/|H|) of the entire

graph, i.e., contains fewer than O(|V |/|H|) nodes and

O(|E|/|H|) edges. Thus, computing a prime PPV over

such a prime subgraph using the standard power iter-

ation costs less than O (I(|V |+ |E|)/|H|), where I is

the number of iterations. Therefore, the total precom-

putation time for all hubs can be upper bounded by

O (|H| · I(|V |+ |E|)/|H|) = O (I(|V |+ |E|)).
This result implies that our offline precomputation

is scalable in the number of hubs, since the upper bound

is independent of |H|. The ability to index a large num-

ber of hubs offline is crucial to speeding up online query

processing as we will discuss in Sect. 6.2. Although our

time complexity is obtained under a quite simplifying

assumption, the experiments in Sect. 7.3 do demon-

strate that offline precomputation is scalable in the

number of hubs.

Space complexity. Under the same assumption that

on average a prime subgraph is smaller than O(1/|H|)
of the entire graph, the space cost of the PPV index

Algorithm 3: OfflinePrecomputation

Input: a graph G; number of hub nodes |H|
Output: PPV index Φ

1 Φ← ∅;
2 H ← Select |H| hubs on G;
3 foreach h ∈ H do

4 Compute prime PPV r̂0h for h on G;

5 Store r̂0h in PPV index Φ;

6 end
7 return Φ.

can be likewise upper bounded by O (|H| · |V |/|H|) =

O(|V |), which is also independent of |H|.

6.2 Online Query Processing

In the online phase, given a graph G, a precomputed

PPV index Φ, a query node q and a stopping condition

S, we incrementally compute an approximate PPV r̂(η)
q

for a given query q according to Eq. 11, as sketched

in Algorithm 3. The algorithm consists of two major

steps: computing the initial iteration i = 0 (line 1–5)

and subsequent iterations i ≥ 1 (line 6–16).

In the initial iteration i = 0, we need to compute the

prime PPV r̂0
q for the query node q, which is required

in iteration i = 1 (see Eq. 11). If q happens to be a hub

node, we can directly load r̂0
q from the precomputed

index; otherwise we need to compute it on-the-fly.

To compute subsequent iterations i ≥ 1 for Eq. 11,

we will reuse the prefixes—PPV increment r̂i−1
q from it-

eration i−1, as well as the building blocks—precomputed

prime PPVs of some hub nodes h ∈ Hexp (line 11). In

particular, these hub nodes h ∈ Hexp are the border

hub nodes of the hubs used in iteration i− 1 (line 12).

It is worth noting that we also need to specify a stop-

ping condition S as an input. The choice of S is flexible

depending on the desired trade-off between accuracy

and efficiency—we can stop the incremental iterations

when an accuracy requirement (in terms of L1 error) is

achieved, or a time limit for query processing is up, or

the maximum number of iterations η is reached.

For a practical implementation, we impose a thresh-

old δ (say 0.005) on the border hub nodes, such that we

include them only if r̂i−1
q (h) > δ (line 9). This threshold

prevents least contributing hubs, improving efficiency

with minimal impact on accuracy.

Time complexity. Suppose that there is an average

of O(¯|H|) border hub nodes in each prime PPV. Thus,

in η iterations we need to handle O(¯|H|η) hub nodes.

Typically ¯|H| � |H| and η ≤ 5. For instance, in our

experiments, even when η = 1, an average precision of

above 0.9 can already be achieved. Hence, this com-

plexity is practically feasible. Additionally, if the query

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 17

Algorithm 4: OnlineQueryProcessing

Input: a graph G; PPV index Φ over H; query node q;
stopping condition S

Output: estimated PPV r̂(η)q

1 if q /∈ H then

2 Compute prime PPV r̂0q for q on G;

3 else

4 Load r̂0q from PPV index Φ;

5 end

6 r̂(η)q ← r̂0q; i← 0; Hexp ← H′(q);
7 while the stopping condition S not met do

8 i← i+ 1; r̂iq ← 0; HnextToExp ← ∅;
9 foreach h ∈ Hexp such that r̂i−1q (h) > δ do

10 Load r̂0h from PPV index Φ;

11 r̂iq ← r̂iq + 1
α r̂

i−1
q (h)r̂0h;

12 HnextToExp ← HnextToExp ∪H′(h);

13 end

14 r̂(η)q ← r̂(η)q + r̂iq;

15 Hexp ← HnextToExp;

16 end

17 return r̂(η)q .

is not a hub node, an extra O ((|V |+ |E|)/|H|) time is

needed for computing its prime PPV, which decreases

with a larger |H|.

6.3 Disk-based Implementation

Even with the availability of many graph compression

techniques [22,7], some real-world graphs are still too

large to reside entirely in the main memory. To han-

dle these graphs, we describe a disk-based approach for

online query processing. Disk-based offline precompu-

tation can be implemented using similar ideas.

First, we observe that in online processing, we need

the entire graph in the main memory such that we can

identify the prime subgraph for the query node. How-

ever, after we have obtained the prime subgraph, we

no longer require the entire graph—only the prime sub-

graph is needed, which is generally many orders of mag-

nitude smaller than the entire graph.

Hence, given a query node, the key to the disk-based

online query processing is to identify its prime subgraph

from a disk-resident graph. The basic idea is to segment

the graph into a number of clusters, such that we can

at least fit each single cluster into the main memory.

Subsequently, we can assemble the prime subgraph by

searching in each cluster separately.

Specifically, to identify the prime subgraph for the

query node, we first load the cluster that contains the

query node into the memory, and start the depth-first

search in this cluster until we reach a node that is out-

side this cluster. We call this event a cluster fault, at

which point we will swap the required cluster into the

main memory to continue the depth-first search. As fre-

quent cluster faults significantly slow down query pro-

cessing, we may prematurely terminate the search once

reaching a threshold on the number of cluster faults.

This can considerably speed up query processing with

a minimal loss in accuracy. In our experiments, we set

the threshold to the total number of clusters, which is

generally robust.

Finally, to segment a graph into clusters, we adopt

the technique in [24], which has also been briefly ex-

plain in Sect. 5.4 for community detection. Note that

clusters and communities are similar notions which we

use interchangeably.

7 Experiments

In this section, we empirically evaluated FastPPV on

two real-world graphs, and obtained promising results

in terms of accuracy, efficiency, and scalability.

In the following, we first describe our experimental

settings. Second, we show that FastPPV substantially

outperforms previous state-of-the-art baselines in both

the offline and online phases. Third, we also present

the trade-off between accuracy and efficiency to gain

more insights into FastPPV. Fourth, we showcase the

performance of FastPPV on graphs of varying sizes as

well as disk-resident graphs, and concluded that it is

scalable. Last, we also compared the performance of

different hub selection strategies to validate key role

played by hub nodes.

7.1 Experimental Settings

Datasets. We used two public real-world graphs be-

low. In particular, the first graph is undirected, and

the second one is directed.

• DBLP2: A bibliographic network of authors, papers

and venues, with undirected edges representing the

author-paper and paper-venue relationships. The graph

contains 2 million nodes and 8.8 million edges.

• LiveJournal3: A social network where users can de-

clare their friends. The friendship relationship is not

necessarily reciprocal, and hence a directed edge from

node i to j means that user i declares j as a friend.

We sampled a graph with 1.2 million nodes and 4.8

million edges. Larger samples will also be used to

study the scalability of FastPPV in Sect. 7.4.

2 http://www.informatik.uni-trier.de/˜ley/db/
3 http://snap.stanford.edu/data/

fanwei.z
Inserted Text
III

18 Fanwei Zhu et al.

Test queries. We randomly sample 1000 nodes from

each graph, where every chosen node is a test query.4

We only focus on these single-node queries, since a

multi-node query can be easily decomposed as multiple

single-node queries using the Linearity Theorem [16,12,

10]. For each experiment, we report the mean perfor-

mance over all test queries.

Hub selection strategy. We assume the näıve strat-

egy in all experiments unless otherwise stated. Nonethe-

less, in Sect. 7.5 we investigate the other two hub selec-

tion strategies proposed in Sect. 5. We label the three

strategies as follows.

• FastPPV: the näıve strategy.

• FastPPV-Q: the query distribution-aware strategy.

• FastPPV-C: the community-based strategy.

Parameters. First, we must determine the number

of hubs |H|, which influences online query processing

speed. We will specifically study the performance of

FastPPV under different |H|. However, as default, for

other experiments we empirically set |H| = 20K for

DBLP and |H| = 120K for LiveJournal unless other-

wise stated, such that online query times are compara-

ble on both datasets.

Next, we also need to specify the number of iter-

ations η, which dynamically controls the trade-off be-

tween accuracy and query time in the online phase. By

default we use η = 2 unless otherwise stated.

Finally, for the precomputed PPVs, we clip them

at 10−4, i.e., discarding nodes with scores less than

10−4 for offline storage. It can drastically reduce offline

space cost with minimal impact on accuracy [10,11].

Moreover, we set α = 0.15 (Eq. 2), which is a typical

teleporting probability.

Accuracy metrics. Given a query, all the methods

compute an approximate PPV. Thus, we need to eval-

uate their accuracy w.r.t. the exact PPV, in terms of

ranking and score. Since users are usually more inter-

ested in higher ranked nodes, we focus on the top 10

nodes. Our accuracy objective is two-fold—we evaluate

not only node rankings, but also node scores. In par-

ticular, we adopted four metrics from previous works

[10–12], namely Kendall’s τ and precision to measure

the rankings, as well as RAG and L1 error to measure

the scores. We refer readers to [10] for details.

For a consistent presentation, we report the comple-

ment of L1 error (1 − L1 error) instead, which we call

L1 similarity. Now, all the metrics indicates a better

accuracy with a larger value.

4 Except the experiment on query distribution-aware hub
selection, which will be discussed in Sect. 7.5.2.

Environment. We implement all methods in Java, and

evaluate them on a Linux system with 2.67GHz CPU

and 10GB RAM. The entire graph resides in the main

memory except for the disk-based implementation in

Sect. 7.4. In that case, the graph is disk-resident as we

assume a reduced memory budget.

7.2 Comparison to baselines

In the following experiments, we compare the perfor-

mance of FastPPV and previous state of the arts.

Baselines. We adopt three recent baselines, namely,

HubRankP, MC1 and MC2. They represent two major

lines of related work. Specifically, HubRankP is a deter-

ministic algorithm based on decomposing and reusing

computation, whereas MC1 and MC2 are Monte Carlo

algorithms based on random walk simulations. In par-

ticular, two Monte Carlo methods are presented given

that they have quite different offline strategies, as we

will elaborate in the following.

First, we implemented HubRankP [11] using their

proposed benefit-based hub selection model to optimize

online query time. To realize their benefit model, we as-

sume a uniformly distributed query log, which is fair as

our test queries are also sampled uniformly. Note that

HubRankP builds upon the Bookmark-coloring algo-

rithm [6] with a better hub selection policy. In addi-

tion, as Chakrabarti et al. [11] show, HubRankP is also

superior to HubRankD [10] (which is itself more effi-

cient than Jeh and Widom’s hub decomposition method

[16]). Hence, among these various approaches [11,10,6,

16], we only present the state-of-the-art HubRankP as
the baseline.

We implemented a second baseline using fingerprints

[12], which we call MC1. Specifically, a fingerprint is

a sample destination node for a random walk start-

ing from the query node. Naturally, the more samples

we obtain, the more accurate the approximation is. Al-

though it was originally meant to sample fingerprints

for each query node offline, we can process queries on-

line by on-the-fly sampling. To reduce the online work-

load, we first sample fingerprints for a set of hub nodes

offline, which can be reused online. To increase the

chance of hitting a hub node, we select nodes with

largest PageRank scores as hubs, which is a common

strategy used in previous works [16,6].

We also adopted another Monte Carlo method based

on walk segments [4], which we call MC2. A walk seg-

ment is a sample random walk path of relatively short

length, which can be concatenated with each other on-

line to obtain a longer path. Starting from the query

node, a random walk path of enough length can be used

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 19

Dataset FastPPV (|H|, η) HubRankP (|H|, εpush) MC1 (|H|, N) MC2 (R, L)

I DBLP 20K, 2 20K, 0.11 20K, 120K 10, 200K

II DBLP 30K, 1 30K, 0.13 30K, 40K 5, 70K

III LiveJournal 150K, 3 150K, 0.20 150K, 200K 20, 250K

IV LiveJournal 200K, 1 200K, 0.29 200K, 10K 10, 20K

Fig. 5: Four accuracy-moderated configurations for FastPPV and the baselines (I, II, III, IV).

Kendall Precision RAG L1 similarity

FastPPV HubRankP MC1 MC2 FastPPV HubRankP MC1 MC2 FastPPV HubRankP MC1 MC2 FastPPV HubRankP MC1 MC2

I .926 .921 .921 .916 .954 .952 .957 .951 .999 .999 .999 .999 .996 .985 .996 .996

II .889 .894 .890 .878 .930 .935 .939 .929 .999 .999 .999 .999 .994 .978 .994 .994

III .928 .927 .886 .882 .964 .963 .959 .958 .999 .998 .999 .999 .997 .977 .997 .997

IV .823 .824 .774 .783 .918 .907 .919 .922 .997 .989 .999 .999 .990 .958 .988 .990

Fig. 6: FastPPV achieves an accuracy level similar to the baselines under each accuracy-moderated configuration.

to estimate the PPV. However, in the offline stage, un-

like other methods which perform fairly extensive com-

putation for a small set of hub nodes, MC2 performs

light computation for every node. Specifically, for each

node, MC2 only simulates and stores a few walk seg-

ments, which will be concatenated online to speed up

query processing.

Lastly, let us look at the parameters for the base-

lines. We also need to set the number of hubs |H| for

HubRankP and MC1, whereas for MC2 we set R to

control the number of walk segments per node. In addi-

tion, each of them also has a parameter to control the

accuracy. In particular, HubRankP relies on a residual

threshold εpush, MC1 depends on the number of finger-

print samples per query N , and MC2 requires an online

walk length of at least L. We will discuss the configu-

ration of these parameters next.

Configurations. As all the methods only compute ap-

proximate PPVs, there is a trade-off between accuracy
and query time. To demonstrate the edge of FastPPV

over the baselines, we configure the parameters to mod-

erate their accuracy, such that FastPPV achieves an

accuracy level similar to or better than the baselines.

Moderating their accuracy in this way enables us to

fairly compare FastPPV with the baselines in terms of

their online query time and offline aspects.

Four such accuracy-moderated configurations have

been identified in Fig. 5. The “moderated” accuracy

levels are presented in Fig. 6.

Results. We first examine the online query processing

time in Fig. 7(a). Across the four accuracy-moderated

configurations, FastPPV consistently achives the best

performance. Specifically, it is 2.0–7.2 times faster than

HubRankP, 2.4–5.2 times faster than MC1, and also

1.9–4.9 times faster than MC2.

Second, we examine the total space cost in the of-

fline stage, as shown in Fig. 7(b). In particular, FastPPV

requires substantially less space than every baseline in

some or all of the configurations (HubRankP and MC1

in III–VI, and MC2 in I–VI), and comparable space in

other configurations.

Third, we compare the total precomputation time in

the offline stage, as illustrated in Fig. 7(c). The results

reveal that FastPPV and MC2 take similar time, both

of which are much faster than HubRankP and MC1

across different configurations.

In summary, FastPPV is superior to all of the three

baselines, factoring in the performance during both on-

line and offline phases.

7.3 Trade-off between Accuracy and Efficiency

There are two factors affecting the tradeoff between ac-

curacy and efficiency: the number of hubs |H| and it-

erations η. To study the effect of each one, we will fix

one of the parameters with its default value, and vary

the other.

7.3.1 Number of Hubs

We first illustrate the effect of varying the number of

hubs |H| on online query processing in Fig. 8. As ex-

pected, having more hub nodes drastically reduces the

query time of FastPPV (see Sect. 6.2). Interestingly,

even with a greatly reduced query time, all the accu-

racy metrics remain robust.

We further study the effect of |H| on offline pre-

computation, as illustrated in Fig. 9. As |H| grows,

we observe that the total space cost increases sublin-

early, whereas the total precomputation time actually

decreases. Let us analyze such trends. As |H| increases

linearly, each prime subgraph becomes smaller expo-

nentially (see Sect. 6.1). Hence, the total size of the

prime subgraphs decreases, resulting in a decreasing

total precomputation time. Likewise, we would also ex-

pect a decreasing total space cost, contrary to what we

20 Fanwei Zhu et al.

FastPPV HubRankP MC1 MC2

0

16

32

48

64

I II III IV

Ti
m
e
(m

s)

Configurations

(a) Online time per query

0

95

190

285

380

I II III IV

Ti
m
e
(m

in
)

Configurations

(c) Offline total time

0

300

600

900

1200

I II III IV

Sp
ac
e
(M

B)

Configurations

(b) Offline total space

Fig. 7: Accuracy-moderated online and offline comparisons with baselines.

have observed. The reason is that we applied clipping

on the prime PPVs, which is more effective on larger

prime PPVs.

Hence, with a decreasing precomputation time and

sublinearly increasing space cost, it is feasible to index

more hubs offline, which also speeds up online query

processing without compromising accuracy. Of course,

if we index too many hubs (substantially more than

what we are using now), the I/O overhead may even-

tually outweigh the benefit, since fetching the precom-

puted prime PPV of a hub node during online query

processing requires one random access to the disk.

RAG L1 similarity Precision

Kendall Time per query

0

8

16

24

32

0.6

0.7

0.8

0.9

1.0

10K 15K 20K 25K 30K 35K

Ti
m

e
(m

s)

Ac
cu

ra
cy

Number of hubs

(a) DBLP

0

20

40

60

80

0.6

0.7

0.8

0.9

1.0

100K 110K 120K 130K 140K 150K

Ti
m

e
(m

s)

Ac
cu

ra
cy

Number of hubs

(b) LiveJournal

Fig. 8: Effect of |H| on online processing. Left axis: accuracy
(RAG, L1, Prec, Kendall). Right axis: time.

Total space Total time

0

7

14

21

28

0

40

80

120

160

10K 20K 30K 40K 50K

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

Number of hubs

(a) DBLP

0

120

240

360

480

0

90

180

270

360

40K 60K 80K 100K 120K

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

Number of hubs

(b) LiveJournal

Fig. 9: Effect of |H| on costs of offline precomputation. Left
axis: space cost. Right axis: time cost.

7.3.2 Number of Iterations

We explore FastPPV’s incremental query processing by

varying the number of iterations η.

As depicted in Fig. 10, allowing more iterations re-

sults in better accuracy but takes longer to process.

This verifies that our approximation indeed becomes

more accurate in an incremental manner. In particu-

lar, the improvement in accuracy is more significant in

earlier iterations, which is consistent with Theorem 2.

Thus, good accuracy can be achieved with only a few

iterations. For instance, in Fig. 10 all the accuracy met-

rics are above 0.9 with η = 2 only.

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 21

0
5
10
15
20

0.6
0.7
0.8
0.9
1.0

Ti
m

e
(m

s)

Ac
cu

ra
cy

(a) DBLP

η = 0 η = 1 η = 2

0

5

10

15

20

0.6

0.7

0.8

0.9

1.0

Ti
m

e
(m

s)

Ac
cu

ra
cy

(a) DBLP

0

8

16

24

32

0.6

0.7

0.8

0.9

1.0
Ti

m
e

(m
s)

Ac
cu

ra
cy

(b) LiveJournal

Fig. 10: Incremental online processing by varying η. Left
axis: accuracy (RAG, L1, Prec, Kendall). Right axis: time.

It is worth noting that η only affects online query

processing, which enables us to dynamically control the

trade-off between accuracy and query time without re-

executing the offline phase. In contrast, many previous

works including our baselines lack such flexibility. To

adjust the trade-off, their offline phases may need a re-

execution.

7.4 Scalability

We investigate the scalability of FastPPV in terms of

two aspects. First, how does FastPPV scale on larger

graphs in the online and offline phases? Second, how

does the disk-based implementation perform on a disk-

resident graph given insufficient main memory?

7.4.1 Scaling to Larger Graphs

We first need to obtain graphs of varying sizes. On the

one hand, each paper in DBLP has a timestamp. Thus,

we take a snapshot of DBLP every four years from 1994

through 2010, as shown in Fig. 11(a). The snapshot

graphs increase in size as time passes. On the other

hand, we have no timestamp information in LiveJour-

nal. Thus, we resort to sampling different numbers of

edges from LiveJournal, as shown in Fig. 11(b). We or-

der these sample graphs in increasing size, and label

them S1 through S5.

(a) Snapshots from DBLP

Snapshot year # Nodes # Edges

1994 0.32M 1.11M

1998 0.54M 2.00M

2002 0.88M 3.48M

2006 1.51M 6.40M

2010 2.00M 8.79M

(b) Samples from LiveJournal

Sample ID # Nodes # Edges

S1 0.31M 0.76M

S2 0.83M 2.67M

S3 1.22M 4.81M

S4 1.53M 7.01M

S5 1.77M 9.30M

Fig. 11: Varying graph size for scalability study.

The key to scaling to larger graphs is to index more

hubs offline. As shown in Fig. 12, even though the graph

increases more than 5 folds on both datasets, by using a

larger number of hubs |H|, we are able to achieve a near

constant online query time without compromising ac-

curacy. Hence, FastPPV can efficiently process queries

online regardless of graph size, given sufficient number

of hubs. In our study, we empirically determined the

number of hubs required to achieve a constant query

time over growing graphs. It is also interesting to pre-

dict the requirement analytically, which warrants fur-

ther investigation in a future work.

Next, we examine any additional cost involved in the

offline phase in order to achieve a constant online query

time. In Fig. 13, we plot the total space and time needed

by offline precomputation against graph size (i.e., the

total number of nodes and edges). The plots clearly

show a linear relationship between the total space (or

time) and graph size. We deem such linear growths in

the offline phase acceptable for maintaining a constant

online query time.

7.4.2 Disk-based Online Processing

Assuming that our graphs do not fit into the main mem-

ory, we use our disk-based online processing, where a

graph is segmented into a number of clusters to mimic

the limited memory budget (see Sect. 6.3). Recall that

at any time, only one cluster needs to be in the main

memory. Hence, the size of the largest cluster is the

minimum working set, which is much smaller than the

entire graph.

As reported in Fig. 14, the disk-based implementa-

tion is scalable in the number of clusters. First, when

22 Fanwei Zhu et al.

(a) DBLP

Year |H| Kendall Prec. RAG L1 sim. Time per query

1994 1K 0.9304 0.9520 0.9995 0.9966 15.7 ms

1998 3K 0.9245 0.9508 0.9993 0.9968 16.1 ms

2002 8K 0.9309 0.9556 0.9995 0.9965 15.1 ms

2006 15K 0.9286 0.9527 0.9993 0.9962 15.7 ms

2010 25K 0.9285 0.9545 0.9994 0.9963 15.2 ms

(b) LiveJournal

ID |H| Kendall Prec. RAG L1 sim. Time per query

S1 14K 0.9274 0.9681 0.9984 0.9966 28.5 ms

S2 63K 0.9244 0.9637 0.9984 0.9970 28.0 ms

S3 120K 0.9269 0.9633 0.9985 0.9967 29.7 ms

S4 160K 0.9252 0.9645 0.9983 0.9965 27.5 ms

S5 200K 0.9210 0.9627 0.9986 0.9962 29.9 ms

Fig. 12: Scaling FastPPV in online query processing.

Total space Total time

0

40

80

120

160

0

150

300

450

600

0M 3M 6M 9M 12M

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

Number of nodes + edges

(b) LiveJournal

0

5

10

15

20

0

32

64

96

128

0M 3M 6M 9M 12M

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

Number of nodes + edges

(a) DBLP

Fig. 13: The costs of offline precomputation in order to scale
FastPPV online. Left axis: space cost. Right axis: time cost.

we have more clusters, query time remains stable. Al-

though cluster faults become more frequent with more

clusters, the clusters also become smaller which are

faster to swap into the main memory, resulting in sim-

ilar query times. Second, as the largest cluster also

shrinks with more clusters, the memory requirement

decreases as well.

7.5 Comparison of Hub Selection Strategies

Finally, we investigate and compare the different hub

selection strategies proposed in Sect. 5.

7.5.1 Näıve Strategy

The näıve strategy uses the PageRank to capture the

sharing property, and the out-degree to capture the dis-

criminating property (Eq. 19). To show that both prop-

erties are desirable, we compare the näıve strategy with

two simplifying approaches, each considering only one

property. Specifically, we also select hubs by PageRank

or out-degree alone. Additionally, we also evaluate a

random selection strategy. However, its performance is

substantially worse than the other strategies, and hence

we omit it here.

As different strategies select different hub sets H,

both offline precomputation for H and online process-

ing using H are affected. To eliminate the effect of other

parameters, we used the default number of hubs and it-

erations mentioned previously (Sect. 7.1).

We first present the impact of the three strategies

(näıve with both PageRank and out-degree, PageR-

ank only, out-degree only) on online query processing

in Fig. 15. While the näıve strategy results in an ac-

curacy level similar to or better than the others, it

greatly speeds up online query processing—1.2× faster

on DBLP and 2.4× faster on LiveJournal than the sec-

ond best strategy. As DBLP is undirected, the three

strategies are fairly correlated with smaller differences

than they are on the directed LiveJournal. Hence, the

speed-up is more significant on LiveJournal.

The näıve strategy also results in cheaper offline pre-

computation for the selected hubs. In Fig. 16, while

the space cost of expected utility is similar to other

strategies, precomputation is 1.3× faster on DBLP and

1.7× faster on LiveJournal than the second best strat-

egy. Likewise, the improvement is larger on the directed

LiveJournal. Note that the precomputation time here

includes the time to compute the prime PPVs for every

hub, but excludes the time to select these hubs—the

latter is negligible compared to the former.

These results clearly demonstrate that both the shar-

ing and discriminating properties must be accounted for

in hub selection.

7.5.2 Query Distribution-Aware Strategy

To investigate the impact of the query distribution Q

on the performance, we created a synthetic query log.

As every node in the graph is a potential query, we

assign a frequency to each node, such that the frequen-

cies follow a power-law distribution as observed in many

real-world query logs [2]. The query distribution Q is

then obtained from the maximum likelihood estimation

of the query frequencies. Finally, we sample the testing

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 23

(a) DBLP (b) LiveJournal

Faults Time Memory # Faults Time Memory
Clusters per query per query need † per query per query need †

10 7.3 1434 ms 15.2% 6.8 747 ms 19.8%

15 10.8 1376 ms 10.3% 10.2 783 ms 15.1%

25 17.8 1370 ms 7.6% 16.8 862 ms 11.7%

35 24.7 1316 ms 5.4% 23.4 833 ms 6.4%

50 35.0 1270 ms 3.5% 33.3 831 ms 5.3%

Fig. 14: Disk-based online query processing. († The size of the largest cluster as % of the entire graph.)

Naïve (both PageRank and out-degree) PageRank Out-degree

0

6

12

18

24

0.6

0.7

0.8

0.9

1.0

Ti
m

e
(m

s)

Ac
cu

ra
cy

(a) DBLP

0

35

70

105

140

0.6

0.7

0.8

0.9

1.0

Ti
m

e
(m

s)

Ac
cu

ra
cy

(b) LiveJournal

Fig. 15: Effect of hub selection with sharing (PageRank)
and/or discriminating (out-degree) properties on online

processing. Left axis: accuracy (Kendall, Prec, RAG, L1).
Right axis: time.

queries from Q, assuming that more frequent queries in

the past are more likely to be queried again.

We now compare FastPPV-Q and FastPPV (with

the näıve strategy). As discussed in Sect. 5.3, FastPPV-

Q selects hub nodes that are more likely to be utilized

by the query nodes and hence enables better sharing.

Thus, we expect that its online query processing time

is better than FastPPV. Again, we adopt the accuracy-

moderated configurations and compare their query time.

As illustrated in Fig. 17, to achieve similar accuracy,

FastPPV-Q is significantly faster than FastPPV, which

validates our theory that the query distribution of Q

would help select better hubs to accelerate PPV compu-

tation. Note that both FastPPV-Q and FastPPV per-

form similarly in offline computation.

Naïve (both PageRank and out-degree) PageRank Out-degree

0

6

13

19

25

0

40

80

120

160

Total space Total time

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

(a) DBLP

0

50

100

150

200

0

150

300

450

600

Total space Total time

Ti
m

e
(m

in
)

Sp
ac

e
(M

B)

(b) LiveJournal

Fig. 16: Effect of hub selection with sharing (PageRank)
and/or discriminating (out-degree) properties on offline

precomputation. Left axis: space cost. Right axis: time cost.

Config. Kendall Precision RAG L1 Sim. Time

I −0.36% −0.01% −0.01% −0.14% −24.83%

II +3.87% +2.60% +2.60% −0.01% −34.48%

III +0.99% −0.48% −0.63% −2.61% −11.86%

IV +2.63% +0.11% −0.66% +2.79% −77.03%

Fig. 17: Online processing of FastPPV-Q and FastPPV. The
results are presented in terms of the relative performance of

FastPPV-Q w.r.t. FastPPV, treating the latter as 100%.

7.5.3 Community-based Strategy

In the following experiments, we investigate the community-

based hub selection strategy FastPPV-C. As the first

step, we need to detect the communities in a graph.

Recall that we adopted a simple clustering algorithm

based on personalized PageRank [24], which is also dis-

cussed in Sect. 5.4.

We still use the same four configurations in Fig. 5 to

compare FastPPV and FastPPV-C. As the latter also

requires the number of communities |C| as input, we

append this parameter to the four configurations, which

is presented in Fig. 18. Note that FastPPV (with the

24 Fanwei Zhu et al.

Dataset both strategies: |H| both strategies: η FastPPV: |C| FastPPV-C: |C|
I DBLP 20K 2 1 20

II DBLP 30K 1 1 20

III LiveJournal 150K 3 1 3

IV LiveJournal 200K 1 1 3

Fig. 18: Four configurations for FastPPV and FastPPV-C (I, II, III, VI).

näıve strategy) is equivalent to the scenario with only

one community, i.e., |C| = 1.

We compare the online processing of FastPPV-C

and FastPPV in Fig. 19. The results illustrate that,

to achieve similar accuracy, FastPPV-C is much faster

than FastPPV. This validates our conjecture that the

marginal usefulness of a candidate hub is affected by

the existing hubs; thus when the hubs are more evenly

allocated in communities, the overall hub set is more

useful.

Config. Kendall Precision RAG L1 Sim. Time

I −0.07% −0.02% 0.00% +2.63% −6.21%

II +0.03% +0.01% 0.00% +0.15% −4.97%

III −0.04% −0.02% +0.56% +0.56% −38.57%

IV +0.14% −0.01% −0.02% +1.16% −40.59%

Fig. 19: Online processing of FastPPV-C and FastPPV. The
results are presented in terms of the relative performance of

FastPPV-C w.r.t. FastPPV, treating the latter as 100%.

8 Conclusion and Future work

In this paper, we presented a scheduled approximation

strategy to approximate PPVs. Specifically, we devel-

oped a hub length-based scheduling scheme for parti-

tioning and prioritizing tours, as well as a structured ag-

gregation model for assembling PPVs. As a result, our

online processing is incremental and accuracy-aware,

enabling a dynamic trade-off between efficiency and

accuracy at query time. We also explore the issue of

hub selection; we developed a conceptual model that

integrates the sharing and discriminating properties to

define the marginal usefulness of a hub, and propose

several hub selection strategies aims at a hub set with

maximal overall usefulness. Empirically, FastPPV is not

only superior to two state-of-the-art baselines, but also

scalable.

As future work, we identify three major directions

to explore. First, automatic configuration: for example,

automatically determine the optimal number of hubs

by correlating with various graph properties like den-

sity and diameter. Second, tackling dynamic graphs: as

a graph can evolve over time, a simple idea to process

graph updates is to only re-compute the affected prime

PPVs, without touching the unaffected ones. Third,

generalizing to other graph algorithms: it is promising

to apply the same principle of partitioning and prior-

itizing tours to other random walk-based algorithms,

such as the hitting and commute time measures.

References

1. R. Andersen, F. Chung, and K. Lang. Local graph parti-
tioning using pagerank vectors. In FOCS, pages 475–486,
2006.

2. R. Baeza-Yates and A. Tiberi. Extracting semantic re-
lations from query logs. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery

and data mining, pages 76–85, 2007.
3. B. Bahmani, K. Chakrabarti, and D. Xin. Fast personal-

ized PageRank on MapReduce. In SIGMOD, pages 973–
984, 2011.

4. B. Bahmani, A. Chowdhury, and A. Goel. Fast incremen-
tal and personalized PageRank. VLDB, pages 173–184,
2010.

5. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Ob-
jectRank: Authority-based keyword search in databases.
In VLDB, pages 564–575, 2004.

6. P. Berkhin. Bookmark-coloring algorithm for personal-
ized pagerank computing. Internet Mathematics, 3(1):41–
62, 2006.

7. P. Boldi and S. Vigna. The webgraph framework I: com-
pression techniques. In WWW, pages 595–602, 2004.

8. U. Brandes, M. Gaertler, and D. Wagner. Experiments
on graph clustering algorithms. In In 11th Europ. Symp.

Algorithms, pages 568–579. Springer-Verlag, 2003.
9. M. Brinkmeier, J. Werner, and S. Recknagel. Commu-

nities in graphs and hypergraphs. In Proceedings of the

Sixteenth ACM Conference on Conference on Information

and Knowledge Management, CIKM ’07, pages 869–872,
New York, NY, USA, 2007. ACM.

10. S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. In WWW, pages 571–580, 2007.

11. S. Chakrabarti, A. Pathak, and M. Gupta. Index de-
sign and query processing for graph conductance search.
VLDBJ, 20:445–470, 2010.

12. D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. To-
wards scaling fully personalized pagerank: Algorithms,
lower bounds, and experiments. Internet Mathematics,
2(3):333–358, 2005.

13. Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa,
and M. Onizuka. Efficient personalized pagerank with
accuracy assurance. In SIGKDD, pages 15–23, 2012.

14. M. Gupta, A. Pathak, and S. Chakrabarti. Fast algo-
rithms for top-k personalized pagerank queries. In WWW,
pages 1225–1226, 2008.

15. T. H. Haveliwala. Topic-Sensitive PageRank: a Context-
Sensitive ranking algorithm for web search. TKDE,
15(4):784–796, 2003.

Scheduled Approximation and Incremental Enhancement for Accuracy-aware Personalized PageRank 25

16. G. Jeh and J. Widom. Scaling personalized web search.
In WWW, pages 271–279, 2003.

17. S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for computing
PageRank. Technical report, Stanford University, 2003.

18. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functionsi. Mathematical Programming, 14(1):265–294,
1978.

19. L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical report, Stanford University, 1999.

20. A. Papoulis, S. Pillai, and S. Unnikrishna. Probability,

random variables, and stochastic processes. McGraw-hill
New York, 1965.

21. A. Pathak, S. Chakrabarti, and M. Gupta. Index design
for dynamic personalized pagerank. In ICDE, pages 1489–
1491, 2008.

22. K. H. Randall, R. Stata, R. G. Wickremesinghe, and J. L.
Wiener. The link database: Fast access to graphs of the
web. In DCC, pages 122–131, 2002.

23. M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content information
in pagerank. In NIPS, pages 1441–1448, 2002.

24. P. Sarkar and A. Moore. Fast nearest-neighbor search in
disk-resident graphs. In SIGKDD, pages 513–522, 2010.

25. C. Silverstein, H. Marais, M. Henzinger, and M. Moricz.
Analysis of a very large web search engine query log.
SIGIR Forum, 33(1):6–12, Sept. 1999.

A Proof of Theorems

Theorem 2 After iteration-k, the L1 error ϕ(k) as defined in
Eq. 5 satisfies the following bound:

ϕ(k) ≤ (1− α)k+2

Proof First, by Eq. 6 and 3, we have the following:

ϕ(k) = 1−
∑
p

r̂
(k)
q (p)

= 1−
k∑

i=0

∑
t∈T i

R(t). (26)

Second, by Def. 1, ∀t ∈ Tk,Lh(t) = k, and ∀t,Lh(t) < L(t)
where L(t) is the natural length of t (i.e., the number of edges
in t). Thus, if L(t) ≤ k+1, then Lh(t) ≤ k, implying ∪ki=0T

i ⊇
∪k+1
i=0 S

i where Si , {t : L(t) = i}. Hence the following:

k∑
i=0

∑
t∈T i

R(t) ≥
k+1∑
i=0

∑
t∈Si

R(t). (27)

Third, we claim that∑
t∈Si

R(t) = (1− α)iα, (28)

which can be shown by induction. The base case i = 0 is
clearly true. In the induction step, suppose it is true for
i = `. All tours with length ` + 1 must be extended from
a tour of length ` by one step. Consider a particular tour t′ of
length `. The total reachability of all tours of length `+1 that
are extended from t′ is R(t′)(1 − α) based on Eq. 2. Hence,

∑
t∈S`+1 R(t) =

∑
t′∈S` R(t′)(1 − α) = (1 − α)`α(1 − α) =

(1− α)`+1α, which proves the claim.
Finally, combining these results (Eq. 26, 27 and 28), we

can derive that

ϕ(k) = 1−
k∑

i=0

∑
t∈T i

R(t)

≤ 1−
k+1∑
i=0

∑
t∈Si

R(t)

= 1−
k+1∑
i=0

(1− α)iα,

which simplifies to ϕ(k) ≤ (1− α)k+2. ut

Theorem 5 Let |VCi | be the number of nodes in community
Ci, then I(TCi) ≈ |VCi |.

Proof We derive this computation of I(TCi) step by step as
follows:

I(TCi) =1
∑

t∈TCi ;L(t)≤ki

R(t)

=2
∑

t∈TCi

ki∏
L(t)=1

1

di
· α · (1− α)L(t)−1

=3

ki∑
L(t)=1

|VCi | · d
L(t)
i ·

1

di

L(t)
· α · (1− α)L(t)

=4 |VCi | · α ·
ki∑

L(t)=1

(1− α)L(t)

≈5 |VCi |

First, we define the importance of CTi as the overall im-
portance of all tours with length no longer than ki in step 1.
Here, we apply a upper bound ki on the length of tours to
avoid those tours with infinite length in case CTi is cyclic; if
CTi is acyclic, ki simply equals to the length of longest tours
in it. Next, in step 2, we group these tours by their length
L(t) so that we can calculate the importance of tours of each
length (from 1 to ki) according to the P-inverse distance defi-
nition. Subsequently, we approximate the number of tours at
each L(t) using the average outdegree di. Specifically, for each
arbitrary node q ∈ CTi , there are di length-1 tours starting
at q in CTi ; for any of q’s neighbors, it has di out-neighors
again, constituting d2i length-2 tours from q. Generally, there

are dL(t)i length-L(t) tours starting from an arbitrary node q,
and thus in CTi which contains |Vi| nodes, the total number of

length-L(t) tours is |VCi |·d
L(t)
i . We thus reformulate the over-

all importance by the number and importance of each length-
L(t) tours in step 3. In step 4, we eliminate the same factors

in the formula and have I(CTi) = |Vi| ·α ·
∑ki
L(t)=1

(1−α)L(t).

Since 1 − α is smaller than 1, we can always find a x′ such
that for all L(t) > x′, (1−α)x

′ ≈ 0. Thus, we can finally have
I(CTi) ≈ |VTi | in step 5. ut

