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In real-world problems, heterogeneous entities are often related to each other through multiple interactions, forming a
Heterogeneous Interaction Graph (HIG in short). While modeling HIGs to deal with fundamental tasks, graph neural networks
present an attractive opportunity that can make full use of the heterogeneity and rich semantic information by aggregating
and propagating information from different types of neighborhoods. However, learning on such complex graphs, often with
millions or billions of nodes, edges, and various attributes, could suffer from expensive time cost and highmemory consumption.
In this paper, we attempt to accelerate representation learning on large-scale HIGs by adopting the importance sampling of
heterogeneous neighborhoods in a batch-wise manner, which naturally fits with most batch-based optimizations. Distinct from
traditional homogeneous strategies neglecting semantic types of nodes and edges, to handle the rich heterogeneous semantics
within HIGs, we devise both type-dependent and type-fusion samplers where the former respectively samples neighborhoods
of each type and the latter jointly samples from candidates of all types. Furthermore, to overcome the imbalance between the
down-sampled and the original information, we respectively propose heterogeneous estimators including the self-normalized
and the adaptive estimators to improve the robustness of our sampling strategies.

Finally, we evaluate the performance of our models for node classification and link prediction on five real-world datasets,
respectively. The empirical results demonstrate that our approach performs significantly better than other state-of-the-art
alternatives, and is able to reduce the number of edges in computation by up to 93%, the memory cost by up to 92% and the
time cost by up to 86%.
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1 INTRODUCTION
Graphs are universal representations of pair-wise interactions. In real-world scenarios, heterogeneous entities are
often related to each other through multiple interactions, forming a heterogeneous interaction graph (HIG) [4,
41, 43]. In Fig. 1, taking the typical e-commerce interaction graph as an example, there are two types of entities,
i.e., users and items, and four kinds of interactions among these entities including “click", “cart", “favorite"
and “purchase", as well as several attributes or features on various interactions. Compared with traditional
homogeneous graphs where the types of nodes and edges are neglected, HIGs are able to describe more abundant
semantics by higher-order structures such as meta-paths [32] and meta graphs [11, 22]. Typically, HIGs are large
scale, consisting of millions or billions of entities and their interactions.

Towards effectively modeling such complex graphs to address real-world problems like node classification and
recommendation, graph embedding (or called graph representation learning), which projects a high-dimension
sparse graph into a low-dimension space that preserves its structural information, has attracted more and more
attention [2, 3, 20, 21, 38, 42]. In particular, Graph neural networks (GNNs) are a family of powerful graph
representation learning approaches which reconstruct node representations by aggregating information from
neighboring nodes. Due to their superior performance, GNNs have been widely studied on a wide range of
fundamental problems in the real world. While previous works focus on homogeneous graphs with single-typed
nodes and interactions [13, 23, 24, 34], recent research becomes aware of the abundant semantics on heterogeneous
graphs and propose to reconstruct node representations frommultiple types of neighborhoods [4, 36, 43]. However,
when dealing with large-scale HIGs, these models generally suffer from expensive time complexities and heavy
memory costs because of the huge number of neighbors and interactions.
To reduce the computational and memory costs on HIGs, one promising direction is to apply sampling on

HIGs: intuitively, we could sample smaller but representative neighborhoods from a distribution that over-weighs
the important regions, known as Importance Sampling (IS) [1, 7, 10, 26]. There are two crucial ingredients of
importance sampling [26], one of which is to design an effective sampling distribution, and the other is to adjust
the estimator according to the sampled neighbors.

Challenges and Insights.
More recently, to make large-scale graph representation learning possible, researchers have proposed several

sampling strategies on GNNs, including node-wise neighborhood sampling [16, 40] and layer-wise neighborhood
sampling [5, 19, 44] to accelerate the training process of GNNs by reducing the number of edges in computation.
The former is to sample neighbors for each node while the latter is to sample neighbors from the whole graph.
Unfortunately, both the node- and layer-wise sampling only deal with homogeneous graphs, which are inadequate
in many real-world scenarios such as E-commerce graphs, as they (1) deal with homogeneous graphs only; (2)
take the take all the nodes of a graph as initial candidates; (3) still incur rapidly increasing cost with more layers.

One immediate question is, how to efficiently apply sampling strategies to large-scale HIGs? A naïve solution
is to respectively sample smaller size of typed neighborhoods for each target node. However, this typically only
works for smaller graphs. On very large graphs, training with such node-wise heterogeneous sampling becomes
prohibitive due to the overhead associated with every node. Thus, we propose batch-wise heterogeneous sampling,
which naturally fits with most optimization algorithms that utilize batch-based gradient updates. That is, we
sample from the union of neighborhoods of all target nodes in a batch at the same time, reducing the overhead
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Fig. 1. A toy example of the HIG in E-commerce. There are four types of interactions including “click", “cart", “favorite" and
“buy", and the corresponding edge feature xi, j,r between users and items. Notice that all edges contain the features while we
just showcase some in this figure for the sake of brevity.

of node-wise sampling significantly. However, adopting batch-wise heterogeneous sampling faces two major
challenges.

First, how to design an effective sampler that works with the heterogeneous neighborhoods? While a sampler
can be easily defined on a per-node, per-type basis, it is not clear how we can sample neighborhoods in a batch,
given that the candidates consist of different types of nodes. Two alternatives could work, namely, type-dependent
and type-fusion sampling. In the former, a sampler is deployed for each neighbor type, and these type-based
samplers sample from their respective sub-neighborhood on their own. In the latter, a single sampler is deployed,
which treats the entire common neighborhood of the batch as its candidates. Intuitively, the type-fusion sampler
would work better, as it takes into account the influences of total types of interactions and models the sampling
distribution over all types jointly.

Second, how to design the corresponding effective estimators with the sampled heterogeneous neighborhoods?
With the neighbors being sampled based on the global importance in a batch, traditional importance sampling
could introduce unwanted variance because of the imbalance between the local importance to the given target
node and the global importance to the given batch. To address this challenge, we respectively propose self-
normalized estimators and adaptive estimators where the former is to adjust the estimators by self-normalizing
importance of sampled neighborhoods while the latter is to automatically learn the global importance (i.e.,
the importance distribution of candidate neighborhoods) by taking into account both structural and attributed
information to ensure variance reduction.

Contributions.
In this paper, we identify the need to work with large-scale heterogeneous interaction graphs in real-world

applications such as e-commerce platforms. Experimental results demonstrate that the proposed framework can
achieve statistically significant improvements. Compared with the full model without any sampling, we achieve
a memory cost reduction by up to 92.48%, a time cost reduction by up to 85.95%, and a reduction of edges in
computation by up to 93.36% during training, while maintaining the same level of accuracy on the four real-world
datasets. To summarize, we make the following contributions.
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• To the best of our knowledge, this is the first work to accelerate large-scale heterogeneous interaction graph
embedding learning via importance sampling. While previous works focus on speeding up training on ho-
mogeneous networks, it is challenging to effectively sample neighborhoods when dealing with large-scale
heterogeneous graphs because of the heterogeneity of edges and nodes.

• We design multiple importance sampling strategies, including type-dependent and type-fusion sampling, for
general heterogeneous graph neural networks that utilize batch-wise gradient updates. Moreover, to reduce the
variance resulted from sampling, we respectively design self-normalized estimators and adaptive estimators to
more effectively aggregate sampled information from the neighborhoods.

• We conduct extensive experiments on five real-world datasets, and evaluate the performance of node classifica-
tion and link prediction. In particular, we have worked with an public large-scale Alibaba E-commerce graph
on an important task of purchase prediction, and have achieved promising results.

2 RELATED WORK
In this section, we summarize the related work of three main aspects, including graph embedding, heterogeneous
graph embedding and node sampling.

Graph Embedding. Graph embedding is to project graphs into low-dimensional vector spaces keeping the
structure similarity. Previous works [9, 12, 15, 27, 33] attempt to preserve the neighborhood structure of nodes
by using randomly sampled pair-wises. For instance, DeepWalk [27] uses random walks to keep the similarity
of nodes in same sequences, whereas LINE [33] makes use of first-order and second-order proximity. These
models are usually unsupervised without being tailored to any specific task. As a family of powerful graph
representation learning approaches, Graph neural networks (GNNs) [37], which aim to extend the deep neural
networks to deal with graph structured data, have been widely used for graph embedding [14, 16, 23, 28, 35]. In
particular, there is a surge of generalizing convolutional operations to graphs. Kipf et al. [23] have proposed the
Graph Convolutional Network (GCN), which designs a graph convolutional network via a localized first-order
approximation of spectral graph convolutions. Moreover, GAT [34] puts forward several attention mechanisms
when learning node embedding. However, these models are limited for the requirement of the whole structural
information. By considering the convolution process as information aggregation, Hamilton et al. [16] further
extend the convolutional model to an inductive setting. In this model known as GraphSAGE, information is
aggregated from neighbors repeatedly through one or more layers. The powerful technique of information
aggregation from neighboring nodes through deep layers has been commonly used in graph neural networks.
Unfortunately, when dealing with large-scale graphs, such strategies suffer from expensive memory and time
costs because of a large number of neighbors and multiple layers. To keep low computational complexity when
learning representation of nodes, Duran et al. [13] propose to propagate information from neighborhoods and
keep the complexity linear with the scale of graphs.

Heterogeneous Graph Embedding. While current graph embedding methods mainly deal with homogeneous
graphs that neglect the types of nodes and edges, they fail to preserve the abundant semantics when modeling
real-world graphs consisting of different-typed nodes and edges [3, 31]. In order to keep the semantics as much
as possible, heterogeneous graphs [30, 32] are proposed to model such complex data. Recently, embedding
learning on heterogeneous graphs is more and more popular [4, 9, 12, 29]. The earlier Esmi [29] adopts multiple
meta-paths [32] to extract various semantics between nodes and adopts factorization machine to learn node
embedding of the pointed type. Metapath2vec [9] proposes the meta path-based random walks to generate type-
wise sequences and designs the heterogeneous skip-gram to learn latent representation of nodes. HIN2vec [12]
learns representation of both nodes and relation types by utilizing feed-forward neural networks. However, these
methods mainly learn general representation of nodes while failing to directly address the supervised tasks.
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Recently, Wang et al. [36] proposes the heterogeneous attention networks (HAN) to construct node embedding
by learning the weight of different meta-path-based information in a semi-supervised manner. To deal with link
prediction on attributed multiplex heterogeneous graphs, Cen et al. [4] propose GATNE to aggregate information
from multiple interactions rather than customized meta-paths. When dealing with larger graphs, GATNE has
to fix the number of neighborhoods so as to make training possible. Inspired by embedding propagation [13],
Zheng et al. [43] and Yang et al. [39] design embedding propagation mechanisms on heterogeneous graphs to
ensure the computational complexity linear with the size of nodes and edges.

Node Sampling. Node sampling has been widely used to work with very large graphs to approximate solutions
efficiently. There are three broad categories of sampling: (1) extract a smaller dataset offline, often through
performing random walks [9, 12, 15, 27]; (2) sample representative nodes, including positive nodes and negative
neighbors [6, 33]; (3) sample nodes to better represent the global information, including node-wise sampling [16,
40] and layer-wise [5, 19, 44] sampling. Recent studies mostly belong to the third category. GraphSage [16] is an
inductive model which gathers neighborhood information to construct embeddings of the target nodes. To avoid
the high memory and time cost of GCNs [8], GraphSAGE [16] attempts to sample neighbors with a node-wise
sampling strategy rather than using the full neighborhood of each node. PinSage [40] also adopts node-wise
sampling to sample the neighborhood around each node and dynamically constructs a computation graph from
the sampled neighborhood. However, such node-wise sampling often comes with a significant computational
overhead associated with each node. Instead, layer-wise sampling is advantageous in deep models with multiple
layers, where the combined neighborhood of all target nodes in a layer is sampled in one go. FastGCN [5] pays
attention to the global structural information and proposed a layer-wise node sampling strategy to sample
important neighbors based on the edges between the candidates and their linked target nodes. To avoid the sparse
of sampled nodes, LADIES [44] samples nodes with layer-dependent samplers where lower-layer candidates
should be connected with higher-layer target nodes. Focusing on the variance reduction, AS-GCN [19] further
designs an adaptive layer-wise sampling which optimizes node classification and reduces variance at the same
time. All FastGCN, LADIES and AS-GCN build upon importance sampling, which is a widely used technique
to reduce the variance of a Monte Carlo estimator by an appropriate change of measure [17, 26]. However, the
complexity of these methods still increases obviously when larger layers are used. Furthermore, all these sampling
strategies are proposed for homogeneous networks and cannot be directly adopted on heterogeneous graphs
with different types of nodes and edges.

3 PRELIMINARIES
In this section, we first introduce related concepts including heterogeneous interaction graph and importance
sampling. The main notations are summarized in Table 1.

Definition 1. Heterogeneous Interaction Graph (HIG): A heterogeneous interaction graph isG = (V, E,T ,R,X,ϕ,ψ ),
whereV is a set of nodes with types, E is the set of edges among these nodes, T = {t1, t2, · · · , t |T |} are the distinct
node types, R = {r1, r2, · · · , r |R |} represents the distinct edge types, X is the set of edge features {Xr |r ∈ R} such
that Xr is the dr -dimension features of type-r edges, ϕ : V → T is the node type mapping function to return the
types of given nodes, whileψ : E → R is the edge type mapping function to return the types of given edges.

For instance, as shown in Fig. 1, there are two types of nodes, namely, users (U) and items (I), and four types
of interactions among these nodes, namely, “click", “cart", “favorite" and “buy", as well as several attributes
within these interactions like the stay time and the frequency of actions. Notice that different from traditional
heterogeneous graphs (or called heterogeneous information networks) [32, 36] mainly pay attention to the
heterogeneity of nodes, we can consider HIGs as the special heterogeneous graphs which not only take into
account types of nodes but also capture the multiple interactions and edge features.
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Table 1. Notations

Symbols Descriptions
G = (V, E,T ,X) The given HIG.

d The dimension of embedding vector.
Bk The set of nodes in kth mini-batch.
vi The i-th node in G.
v̂i The i-th sampled node.

ϕ(vi ) The type of vi .
ψ (vi ,vj ) The edge type between vi and vj .
p(vj |vi ) The weight of vj to vi .
q(vj |·) The sampling probability of vj .

xvi ,vj ,r ∈ Rdr The type-r edge feature vector of d dimensions between vi and vj .
λr ∈ Rdr×1 The weight of type-r edges.

br The bias of type-r edges.
д′
vi ,r ∈ Rd The propagated information of type-r neighborhoods.

д̃vi ,r ∈ Rd The estimated д′
vi ,r .

hi ∈ Rd The embedding vector of vi .
h̃i ∈ Rd The reconstructed hi .

H ∈ R |V |×d The node embedding matrix.
Wt ∈ R

|R |d×d The type-t embedding weight matrix.
Nvi ,r , N̂vi ,r The type-r neighborhoods and the sampled type-r neighborhoods of vi .
Nvi , N̂vi The neighborhoods and the sampled neighborhoods of vi .

Definition 2. Heterogeneous Interaction Graph Embedding (HIGE): Given a heterogeneous interaction graph
G = (V, E,T ,R,X,ϕ,ψ ) defined in Definition 1, the goal of HIGE is to learn a project functionH : H(vi ,ϕ(vi )) →
hi , hi ∈ Rd and d ≪ |V| with the assumption that the embeddings of nodes and their neighborhoods should be as
similar as possible [4, 29, 36].

To address the problem of HIGE, previous works [9, 12] adopt meta-path-based random walks to sample
similar nodes and input them into deep neural networks. Recently, with the rapid development of graph neural
networks, it becomes popular to reconstruct node embedding by aggregating information of heterogeneous
neighborhoods, and then keep the similarity of node embedding and its reconstructed embedding based on
heterogeneous attention mechanisms [4, 36] or the direct Euclidean distance [43]. Taking Fig. 1 as an example,
given user u2 and the interacted items (i.e., i1, i2, i3 and i4), we respectively aggregate information from items for
each type of interactions and then reconstruct the embedding of u2 based on the aggregated information. The
details of heterogeneous information aggregation are described in Section 4.1. Actually, such aggregation could
suffer from the expansive computational complexity and memory cost when dealing with large-scale graphs.

Definition 3. Importance Sampling (IS) [26]: Importance sampling is to sample important nodes from a distribu-
tion that over-weighs the important regions. Suppose that our problem is to aggregate information µ =

∑N
j=1 p(vj )f (vj )

where N is the number of nodes, p(vj ) ∈ R+ is the weight of vj and f (vj ) denotes the information of node vj , im-
portance sampling is to sample n important nodes subject to distribution q, and ensures the gathered information
E(µ̂q) = µ. In this paper, we can consider the edge weight of neighbor vj as p(vj ) and set embedding of vj as the
information f (vj ).
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Fig. 2. The process of sampling neighbors including type-dependent sampling and type-based sampling. (a) is the batch-wise
information propagation/aggregation to reconstruct node embedding based on multiple neighbors, (b) is the type-dependent
sampling to sample neighbors for each type of interactions, (c) is the type-fusion sampling to sample neighbors from the
union candidates taking all interactions into consideration.

Taking Fig. 2(b) as an example, given the neighbors v3, v4, v5 and v6 to propagate information with edge
weights to their target nodev12, IS firstly measures the importance of these neighbors based on their edge weights
p(v) and the propagated information f (v), and then samples the more effective neighbors rather than the whole
neighbors.
In particular, µ can be re-formulated as the expectation over the sampling distribution q:

µ =
N∑
j=1

p(vj )f (vj ) =
N∑
j=1

p(vj )f (vj )

q(vj )
q(vj ) = Eq

[
p(vj )

q(vj )
f (vj )

]
. (1)

Therefore, the importance sampling estimator of µ is

µ̂q =
1
n

∑
j

p(v̂j )

q(v̂j )
f (v̂j ), v̂j ∼ q, (2)

where n denotes the number of sampled neighbors, and v̂j is a sampled neighbor from q. By setting n ≪ N , the
computational sources are saved actually. While node-wise sampling utilizes q(vj |vi ) to sample neighborhoods of
vi with

∑
vj q(vj |vi ) = 1, layer-wise sampling is to sample information from the union candidates with q(vj |V),

and
∑
vj q(vj |V) = 1.

4 THE PROPOSED METHOD
In this section, we firstly introduce the general heterogeneous interaction graph embedding (HIGE) method which
aggregates information from different types of neighborhoods. Focusing on accelerating HIGE on large-scale
graphs, we then propose heterogeneous sampling strategies including type-dependent and type-fusion samplers
to overcome the expensive time cost and high computational complexity.

4.1 The General HIGE Model
To tackle with HIGs, a general idea is to reconstruct node embedding by propagating information from its
heterogeneous neighbors, and backwardly propagate gradients [4, 36, 43], as shown in Fig. 2(a). Specifically,
given a node vi of type ϕ(vi ) and its edges {evi ,vj ,r |vj ∈ Nvi ,r , r ∈ R}, the aggregated information of node vi
from type-r neighborhoods is
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д′
vi ,r =

∑
vj ∈Nvi ,r

1
|Nvi ,r |

w(vi ,vj , r )hvj , (3)

where д′
vi ,r is the aggregated information, Nvi ,r is the type-r neighborhoods of node vi , vj ∈ Nvi ,r is a specific

type-r neighbor of node vi ,w(vi ,vj , r ) denotes the weight of edge evi ,vj ,r , hvj ∈ Rd denotes the embedding of
node vj , d is the dimension of hvj . Notice that,w(vi ,vj , r ) between node vi and vj is calculated by

w(vi ,vj , r ) = σ (xvi ,vj ,rλr + br ), (4)

where σ is an activation function, xvi ,vj ,r ∈ Rdr is the edge features between node vi and vj , r = ψ (i, j) is the
edge type, dr is the length of type-r edge features,ψ (·) is the edge type mapping function, λr ∈ Rdr×1 and br ∈ R
are the weight and bias parameters shared by type-r edges.
And then, the reconstructed embedding of node vi is calculated by

h′
vi = σ

(
concat(д′

vi ,r0 ,д
′
vi ,r1 , · · · ,д

′
vi ,r |R |

)Wϕ(vi ) + bϕ(vi )

)
, (5)

where h′
vi ∈ R

d is the reconstructed embedding, σ is an activation function, concat(·) is the concatenation option,
Wϕ(vi ) ∈ R

|R |d×d denotes the projection matrix of type-ϕ(vi ) nodes, bϕ(vi ) denotes the bias and |R | denotes the
total number of edge types R in the heterogeneous graph. Obviously, the computational complexity of the general
model is linear with the scale of edges and nodes on heterogeneous graphs.

4.2 Batch-Wise Heterogeneous Sampling
To reduce computational overhead and memory cost of the training process, a naiv̈e idea is to sample several
neighbors rather than aggregating information from all neighborhoods. Previous works [16, 40] on homogeneous
works usually adopt node-wise sampling to sample several neighbors per node for learning. Paying attention to
the global and local structural information, current works [5, 19, 44] propose layer-wise sampling strategies which
consider the whole neighborhood as the candidates. However, these strategies are to deal with homogeneous
graphs which ignore the abundant semantics of heterogeneous nodes and edges. Moreover, these strategies can
only deal with smaller graphs because the overhead for node-wise sampling and layer-wise sampling during
optimization could be quite expensive, or even unaffordable. In this section, by re-writing Eq. (3) as

д′
vi ,r =

∑
vj ∈Nvi ,r

p(vj |vi , r )w(vi ,vj , r )hvj

=
∑

vj ∈Nvi ,r

q(vj |Bk )
p(vj |vi , r )

q(vj |Bk )
w(vi ,vj , r )hvj

= Eq

[
p(vj |vi , r )

q(vj |Bk )
w(vi ,vj , r )hvj

]
,

(6)

where Bk denotes the target nodes in the kth mini-batch, q(vj |Bk ) denotes the corresponding sampling probability
in the kth mini-batch, or in other words, the importance in this batch, and p(vj |vi , r ) equals to 1

|Nvi ,r |
, we attempt

to make heterogeneous sampling for each batch, or in other words, batch-wise heterogeneous sampling with
probability distribution

v̂j ∼ q(v̂j |v1,v2, · · · ,v |Bk |) vj ∈ {Nvi ,r |r ∈ R,vi ∈ Bk }, (7)

where v̂j is the sampled neighbor. As shown in Fig. 2(a), we sample instances from the union neighborhood of
all the target nodes in a batch, where the union neighborhood denotes the union of the individual neighbors of
each target node. Since sampling is now done for each batch instead of each target node, batch-wise sampling is
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often a good choice to reduce computational overhead and memory cost of the training process. Compared with
layer-wise samplings [5, 19, 44] which require the total nodes as candidates and have to load the whole graph
structure before training, our batch-wise heterogeneous sampling focus on union neighborhoods in the current
batch. Compared with node-wise sampling which sample neighborhoods for each target node, our batch-wise
heterogeneous sampling contains the advantages of reducing the overhead of sampling.

4.3 Type-Dependent Sampling Strategy
By now, we have defined the general batch-wise heterogeneous sampling. Different from traditional importance
sampling, the neighborhoods of each batch connect with target nodes based on different-typed interactions. A
straightforward idea is to respectively design a sampler for each type. For example, in Fig. 2(b), there are four
types of candidates, and we respectively sample neighbors from each type of candidates by using one sampler. By
adopting type-dependent sampling, we consider q(vj |v1,v2, · · · ,v |Bk |) as a set of {qr (vj |·)|r ∈ R}, and sample
type-r neighborhoods with the corresponding sampler qr (vj |·). The remaining question for type-dependent
sampling is how to design the exact form of this sampler so as to keep low variance for efficient training. Here
we define the average information of д′

i,r as

µqr =
1

|Bk |

∑
vi ∈Bk

д′
vi ,r =

1
|Bk |

∑
vj

qr (vj |·)
∑

vi ∈Bk

p(vj |vi , r )w(vi ,vj , r )hvj
qr (vj |·)

vj ∈ {Nvi ,r |r ∈ R,vi ∈ Bk }, (8)

where µqr is the average information by utilizing the type-dependent sampler qr , |Bk | is the number of type-r
samples. Then, the variance Varqr of µqr is calculated by

Varqr (µqr ) =
1

|Bk |

∑
vj

q(vj |·)

µqr −
∑

vi ∈Bk

p(vj |vi , r )w(vi ,vj , r )hvi
qr (vj |·)


2

=
1

|Bk |
Eqr

[
µqrqr (vj |·) −

∑
vi ∈Bk p(vj |vi , r )w(vi ,vj , r )hvi

]2
qr (vj |·)2

.

(9)

Obviously, to ensure minimizing the variance, a better sampler is shown as follows.

qr (vj ) =

∑
vi ∈Bk p(vj |vi , r )|w(vi ,vj , r )hvi |∑

vj
∑
vi ∈Bk p(vj |vi , r )|w(vi ,vj , r )hvi |

, (10)

where qr (vj ) is the abbreviation of qr (vj |v1,v2, · · · ,v |Bk |) and qr (vj |·). We can intuitively understand the compo-
nentp(vj |vi , r )|w(vi ,vj , r )hvi | as the importance ofvj , where |w(vi ,vj , r )hvi | denotes L1-norm value ofwvi ,vj ,rhj .
A drawback of defining the sampling distribution qr (vj ) in this manner is that it involves |wvi ,vj ,rhj |, which is
constantly updated during training. As a compromise, similar to that in [5], we approximate |wvi ,vj ,rhj | with
p(vj |vi , r ) as well in the sampler qr (vj ), utilizing only the structural information of vj as its importance:

qr (vj ) =

∑
vi ∈Bk p(vj |vi , r )

2∑
vj
∑
vi ∈Bk p(vj |vi , r )

2 . (11)

4.4 Type-Fusion Sampling Strategy
Essentially, the type-dependent strategy pays attention to the influence of same-type neighborhoods, without
jointly considering the effect of heterogeneous types. Thus, they only reduce the individual variance of each
type, lacking a global picture on the overall variance of the batch. Moreover, neighbors which contain multiple
interactions may be not sampled. To address this weakness, we propose a type-fusion sampling strategy which
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considers the entire neighborhoods as the candidates, and sample neighborhoods with the same sampler in each
batch. Compared with type-dependent sampling in Fig. 2(b), the type-fusion sampling in Fig. 2(c) can sample
node v3 which contains two types of interactions.
By dividing the parameterWϕ(vi ) based on relations, we can rewrite the concatenation of {д′

vi ,r |r ∈ R} in
Eq. (5) as

д′
vi =

∑
r ∈R

∑
vj ∈Nvi ,r

p(vj |vi , r )w(vi ,vj , r )hvjWr , (12)

whereWr ∈ Rd×d denotes the relation-wise projection matrix. Under the type-fusion strategy, the average
information in k-th batch over all types is given by

µq =
1

|Bk |

∑
vi ∈Bk

д′
vi =

1
|Bk |

∑
vj

q(vj |·)
∑
r ∈R

∑
vi ∈Bk

p(vj |vi , r )w(vi ,vj , r )hvjWr

q(vj |·)
vj ∈ {Nvi ,r |r ∈ R,vi ∈ Bk },

(13)
This formulation assumes that all candidates are sampled by the same sampler, i.e., q(vj |v1,v2, · · · ,v |Bk |). As
shown in Fig. 2(c), the different-typed neighborhoods are sampled according to the type-fusion sampling distribu-
tion. Similar to the type-dependent sampler in Section 4.3, the optimal sampler to minimize the variance with
only structural informationcan be defined as follows.

qs (vj ) =

∑
r ∈R

∑
vi p(vj |vi , r )

2∑
r ∈R

∑
vj
∑
vi ∈Bk p(vj |vi , r )

2 , (14)

where qs (vj ) is the structure-based type-fusion sampler.
While the above sampling strategies only consider link-based weight as the importance of nodes but ignoring

the attributed-based importance on edges, we further pay attention to the edge features within HIGs and propose
to measure the importance of nodes with both structural and attributed information like ratings and number
of fans. Considering the edges of different types contain different features, here we put forward a learnable
type-fusion sampler which measures the importance of heterogeneous neighborhoods with latent parameters
and sample representative candidates during optimization, namely,

qa(vj ) =

∑
r ∈R

∑
vi p(vj |vi , r )f (x(vi ,vj , r ))∑

r ∈R
∑
vj
∑
vi ∈Bk p(vj |vi , r )f (x(vi ,vj , r ))

, (15)

where qa(vj ) denotes the adaptive sampler, f (x(vi ,vj , r )) denotes the importance of edge features which is
calculated by σ (x(vi ,vj , r )Wx,r ) andWx,r ∈ Rdr×1 is the type-r latent parameter need learn.

4.5 Heterogeneous Self-Normalized and Adaptive Estimators

In type-dependent or type-fusion strategies, the estimator д̂vi ,r is weighted by p(v̂j | ·)
q(v̂j | ·)

, and the batch-wise impor-
tance sampling estimator can be calculated as

д̂vi =
1
n

∑
r ∈R

∑
vj ∈N̂Bk ,r

p(v̂j |·)

q(v̂j |·)
w(vi , v̂j , r )hv̂jWr , (16)

where д̂vi is the approximated information,n is the number of samples, N̂Bk ,r is the sampled type-r neighborhoods
in this batch, p(v̂j |·) equals to 1

|Nvi ,r |
and q(v̂j |·) denotes the heterogeneous samplers, such as qr , qs and qa .

However, this could increase the variance resulted from the imbalance of p(v̂j |·) and q(v̂j |·). The former is a “local”
weight based on each target node’s own neighborhoods, whereas the latter is the batch-wise “global” sampling
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probability. In general, the union neighborhoods of a batch is much larger than the individual neighborhoods of
a single target node.
To address such problem, for structure-based qs (vj ), a promising way is to balance the weights based on

self-normalized importance, similar to that in [26]. The corresponding estimator can be computed as

д̂sn,vi =
∑
r ∈R

∑
v̂j ∈N̂vi ,r

π (v̂j )∑
v̂ ′
j ∈N̂vi ,r

π (v̂ ′
j )
wvi ,vj ,rhjWr , (17)

where д̂sn,vi denotes the self-normalized information, π (vj ) =
p(vj | ·)
q(vj | ·)

, N̂r is the sampled neighborhoods of type r .
Besides, for the adaptive sampler qa(vj ), we estimate the reconstructed д̂vi the same as Eq. (16). Considering

the adaptive sampler qa(vj ) not necessarily results in a minimal variance, we add the variance to the loss function
and explicitly minimize the variance by model training, to fulfill variance reduction. The variance from adaptive
samplers is Varqa (µ̂q) where µ̂q =

1
|Bk |

∑
vi ∈Bk д̂vi .

4.6 Computational Complexity Analysis
Considering the main computational cost of our models is from embedding propagation/aggregation, here we
analyze the time complexity and memory cost of such a process of both the general HIGE and the variants utilizing
heterogeneous sampling strategies. Given the heterogeneous interaction graph G, the computational complexity
of the general HIGE is O(Nneд |V|d + |E |d2) and the corresponding memory cost is O(|V|d + |R |d2 + |E |d),
where Nneд denotes the number of negative samples of each node, and it will increase with the scale of G. For
VarR-TD based variants, the computational complexity is O(Nneд |V|d +

∑
r ∈R |êr |d

2) and the memory cost is
O(|V|d + |R |d2 +

∑
r ∈R |êr |d). For VarR-TF, VarR-TF-SN and VarR-TF-AS variants, the complexity is associated

with O(Nneд |V|d + |ê |d2) and the memory cost is O(|V|d + |R |d2 + |ê |d). Compared with the GCN-based models
including Fast-GCN and AS-GCN where the computational complexity is related to the number of layers [44],
both the general HIGE and its variants with sampling just propagate information between nodes where the
complexity is linear with the scale of G. Compared with the general HIGE, the main complexity and memory
reduction of sampling-based variants is associated with the number of sampled edges, i.e., |êr | and |ê |. With
a small sample size n (or nr ), the coefficient |ê | (or |êr |) can be much smaller than the total number of edges
|E |, namely, |ê | ≪ |E|. Therefore, our heterogeneous sampling strategies can bring in a significant drop of the
computational and memory cost.

Notice that it may be useless if the number of samples is too small since the propagation will be quite ineffective.
The problem of effective sample size (ESS in short) is meaningful enough, where the common solution is the
ratio of the variances of the estimators N Varp (µ)

Varq (µ)
[25]. In this paper, since the effective sample size of each batch

may be not stable, we set the sample size n (or nr ) as the reasonable fixed number and analyze the extreme cases,
i.e., n = 0 (or nr = 0) and n = NB (or nr = NB,r ) where NB (or NB,r ) is the total number of batch-wise neighbors
(or type-r neighbors) in experiments.

4.7 Optimization Framework
To integrate the proposed batch-wise sampling strategies to large-scale HIGE learning, the overall loss function
consists of four parts, namely, the loss of a specific task, the reconstruction loss of the embedding propagation
with sampling, the variance of sampled information and the regularization of latent parameters, which are shown
as follows.

Lk = Ltask,k + αLep,k + βΩ(Θ) + ξVarqa,k (µ̂q), (18)
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Algorithm 1 Type-dependent strategy (one batch)
Input: target nodes {vi }; neighborhood {vj };

sampling size of each type {nr |r ∈ R}; embeddings H (k ); parameters Θ(k ).
Output: the optimized embedding H (k+1) and parameters Θ(k+1).
1: for each r ∈ R do
2: compute p and the sampler qr by Eq. (11);
3: sample nr neighborhoods with the sampler qr ;
4: end for
5: for each vi do
6: for each r ∈ R do
7: compute the estimator д̂i,r by Eq. (16);
8: end for
9: compute the reconstructed h̃i by Eq. (5);
10: compute Lep,k (vi ) based on h̃i and hi ;
11: end for
12: minimize Lk (H (k ),Θ(k)) and perform gradient updates;
13: output the optimized Θ(k+1) and H (k+1).

Algorithm 2 Adaptive type-fusion strategy (one batch)
Input: target nodes {vi }; neighborhood {vj };

the size of samples n; the balance parameter ξ ; embeddings H (k ); parameters Θ(k ).
Output: the optimized embedding H (k+1) and parameters Θ(k+1).
1: compute p and the sampler qa by Eq. (15);
2: for each vi do
3: compute the estimator д̂i by Eq. (16);
4: compute the reconstructed h̃i with {д̂i,r |r ∈ R} by Eq. (5);
5: end for
6: minimize Lk (H (k ),Θ(k)) and perform gradient updates;
7: output the optimized Θ(k+1) and H (k+1).

where Lk is the loss value in k-th batch, Ltask,k is the loss from supervised learning in the same batch, Lep,k is the
embedding propagation loss with sampling in the k-th batch, Varqa,k (µ̂q) is the variance of sampled information,
Ω(Θ) is the regularization of all latent parameters, and α , β and ξ are three hyper-parameters. Notice that, for
type-dependent sampling and structure-based type-fusion sampling, ξ is set as 0.
Specifically, as an example, to address the problem of purchase prediction in E-commerce, we design a

semi-supervised framework to optimize the embedding propagation with sampling and purchase prediction
simultaneously:

Ltask,k = −
1
m

∑
⟨vi ,vj ,y ⟩∈Dk

loд(σ (y(hiWhj + btask ))), (19)

where Dk is the set of training triplets ⟨i, j,y⟩ in the k-th batch such that y is the ground truth of user-item pair
vi and vj , andW and btask are the weight and bias parameters. This is essentially a link prediction task. More
generally, for node classification, Ltask,k can also employ an cross-entropy loss function. On the other hand, the
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Table 2. Description of datasets

Dataset # Nodes # Edges Relations (A-B) # A-B Feature Training Validation Test

DBLP 18,405 212,190

Paper-Author 19,645

1 2,027 1,013 1,014
Paper-Conf. 14,328
Paper-Paper 16,2440

Author-Author 6,572
Author-Conf. 9,205

Aminer 41,523 199,429

Paper-Author 52,539

1 9,232 4,616 4,616Paper-Conf. 18,464
Author-Conf. 52,539
Author-Author 75,887

IMDB 11,958 43,937

Moive-Director 4, 349

49 1,793 896 896Moive-Actor 13, 033
Actor-Actor 13, 522

Actor-Director 13, 033

Yelp 971,258 7,159,671
User-review-Business 4,569,305

8 159,033 79,516 79,516User-tip-Business 1,619,108
User-User 971,258

Alibaba 4,527,222 49,785,900
User-click-Item 44,664,880

30 1,698,375 646,364 646,364User-collect-Item 3,603,744
User-cart-Item 1,517,276

reconstruction loss of embedding propagation with sampling can be defined as follows:

Lep,k =
1

N |Neд(vi )|

∑
i ∈Bk ,vj ∈N eд(vi )

[γ + | |h̃i − hi | |
2
2 − ||h̃i − hj | |

2
2]+, (20)

where negative sampling from non-neighborhoods is employed such that Neд(vi ) is the set of negative neigh-
borhoods of vi , h̃i is the reconstructed embedding of vi , γ is a threshold parameter, and [·]+ is Relu activation
function. Notice that h̃i can be calculated by Eq. (5) where дi,r is replaced by our proposed estimators in Eq. (16)
or (17). For adaptive type-fusion samplers, we reduce the variance during training to optimize the parameters of
such samplers, namely, Varqa (µ̂q). By designing such a unsupervised loss function, embedding information of
neighborhoods can be propagated to nodes iteration by iteration where each iteration can be considered as a
convolutional layer.
The process of training with the type-dependent importance sampling strategy is outlined in Algorithm 1.

Likewise, the adaptive type-fusion strategy is summarized in Algorithm 2.

5 EXPERIMENTS
In this section, we evaluate the empirical performance of our method on five real-world heterogeneous graphs.
More specifically, we study the effectiveness and efficiency of our sampling strategies in the context of node
classification and link prediction tasks.

5.1 Datasets and Tasks
The statistics of our five datasets, namely, DBLP, Aminer, IMDB, Yelp and the Alibaba graph, are summarized in
Table 2. We describe these four datasets and their associated tasks in the following.
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5.1.1 DBLP Bibliographic Network. This is a public bibliographic dataset1, which consists of three types of nodes,
namely, authors (A), papers (P) and conferences (C), as well as five types of edges, namely, “co-authorship" (A-A),
“attend" (A-C), “written by" (P-A), “publish" (P-C) and a composite meta-path (P-A-P). We treat the occurrence
frequency of the five relations as edge features, and subsequently construct the bibliographic network as a
heterogeneous graph. This is a relatively small graph, enabling us to study various properties of our proposed
strategies and comparing with some baselines that cannot scale to larger graphs. On this dataset, the authors are
assigned to four research domains, and we are to predict the class of the given authors. The authors are randomly
split into subsets of ratio 2:1:1 for training, validation and test.

5.1.2 Aminer Bibliographic Network. This is also a public benchmark dataset2 [18], which consists of three types
of nodes, namely, authors (A), papers (P) and venues (V), as well as four types of edges, namely, “co-authorship"
(A-A), “publication" (P-V), “participation" (A-V) and “write" (A-P). We treat the times of collections as edge features
and construct the heterogeneous graph similar to that on DBLP dataset. We adopt the research domains as classes,
and perform multi-class node classification for papers on this dataset. The ratio of training, validation and test is
2:1:1 as well.

5.1.3 IMDB Movie Network. This is a movie information dataset3, which consists of three types of nodes,
namely, actors (A), movies (M) and directors (D), as well as four types of edges, namely, “directed" (D-M),
“participation" (A-M), “co-operation" (A-A), “participating" (A-M) and “reused" (A-D). On this dataset, the records
of movie information are from the 1900s to 2016. We extract the records that appeared before 2014 to construct a
heterogeneous movie graph and our goal is to predict whether the given actor will co-operate with the specific
director from 2014 to 2016. We randomly generate negative labels five times as much as positive ones, and the
ratio of training, validation and test is also 2:1:1. In addition, we adopt the meta-paths (A-D-A & A-A), (M-D-M &
M-A-M) and (D-A-D) to respectively generate negative neighbors for actors, movies and directors.

5.1.4 Yelp Business Graph. This is a public large-scale user review dataset 4 , recording users’ reviews and tips
as well as friendships. It consists of two types of nodes, namely, users (U) and businesses (B), as well as three
types of relations, namely, “reviewed” and “tipped” between users and businesses, and “friendship” between users.
Furthermore, all these relations contain several features, like rating scores and fans. We extract records before
24th Oct. 2019 to construct a HIG and our goal is to predict whether the pointed users will review the given items.
We set the remainder reviews as positive labels and randomly generate negative labels four times more than
positive ones, and the ratio of training, validation and test is also 2:1:1. Moreover, we randomly sample negative
neighbors for users and items.

5.1.5 Alibaba E-commerce Graph. This is a public large-scale user activity dataset5, capturing one week’s user
actions on the Alibaba platform. It consists of two types of nodes, namely, users (U) and items (I), as well as
multiple types of relations, namely, “click”, “cart”, “favorite” and “buy” between users and items. Between a pair
of user and item, we concatenate their relation type encoding and attribute vectors to form the edge features, and
subsequently construct a HIG. Notice that the Alibaba graph is a real Alibaba graph roughly 100 times larger
than the Aminer graph, enabling us to study the scalability of different methods. On this dataset, we would like
to predict users’ purchase actions. This task can be formulated as a binary classification problem, where we
only use the first five days of data for training, and the remaining two days of data for testing. In addition, we

1Available at https://dblp.uni-trier.de/db/.
2Available at http://resource.aminer.org/lab-datasets/crossdomain/.
3Available at http://www.imdb.com.
4Available at https://www.yelp.com/dataset/.
5Available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716.
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randomly sample five negative neighbors for each node. Since it could be quite difficult to judge whether two
users/items are different, we respectively sample negative items for users and sample negative users for items.
We adopt Micro-F1 and Macro-F1 as the evaluation metrics for both DBLP and Aminer while adopting F1

and AUC as the evaluation metrics for IMDB, Yelp and the Alibaba graph. All the above metrics are positively
related to the performance of methods.

5.2 Baselines and Experimental Settings
We first compare our various importance sampling strategies with the general HIGE model and HAN [36] without
any sampling. We also compare with state-of-the-art sampling algorithms on GCN [5, 19] to showcase that it has
limited effectiveness and scalability, whereas the sampling-based models not only achieve superior accuracy, but
also scale to large graphs. Finally, to study the utility of our proposed variance reduction, we also substitute our
variance reduction sampler with a uniform sampler. These methods are summarized in the following.
• HIGE: This is the general heterogeneous embedding model on the whole graph. This can be understood as
an extreme case where 100% neighbors are sampled. As all information is preserved, the effectiveness of this
method intuitively represents an upper-bound for all sampling-based methods.

• HIGE-Nil: At the other extreme of HIGE, we sample 0% or none of the neighbors. This is also equivalent to
setting α = 0 in Eq. (18). Intuitively, we consider the effectiveness of this method as a lower-bound; any method
that utilizes neighborhood information should outperform it.

• HAN [36]: This is a heterogeneous graph representationmodel that aggregates information from different-typed
neighborhoods by utilizing semantic-level and node-level attention mechanisms. Here we have implemented
the batch-wise version which supports the one-hot features of nodes and can be used to deal with link prediction
tasks

• GraphSage [16]: This is an inductive graph representation model which aggregates information based on
node-wise random sampling. In this model, per node on the higher layer aggregates information from its
sampled lower-layer neighborhoods.

• Fast-GCN [5]: This is an accelerated GCN framework based on layer-wise importance sampling. In this model,
the neighborhood is sampled based their structural information. Here we utilize the transductive version which
consider embedding vectors as node features and construct the homogeneous graph without types of relations.

• AS-GCN [19]: This is an accelerated GCN framework based on layer-wise adaptive sampling. This model
optimizes parameters of the designed samplers in each iteration. The fundamental settings including node
representation and graph construction are the same as those in Fast-GCN.

• Unif-TF andUnif-TD: methods prefixed with “Unif” substitute the variance reduction sampler in our proposed
strategy with a uniform sampler.

• VarR-TD, VarR-TF , VarR-TF-SN and VarR-TF-AS: Methods prefixed with “VarR” denote our variance
reduction sampler under different policies, including type-dependent (TD) or type-fusion (TF), type-fusion
with self-normalization (TF-SN) and adaptive type-fusion (TF-AS).
For our methods and all the baselines, we set β = 0.1, γ = 0.1,ψ = 0.1. We set the value of α of HIGE according

to the performance on validations. Here we respectively set α as 0.4, 0.5, 1, 0.4 and 0.4 for the five datasets
according to the performance on validations. For GraphSage, Fast-GCN and AS-GCN, we adopt two layers, since
the computational cost of AS-GCN increases rapidly when the layers become deeper and deeper. For HAN, we
set all the remainder parameters the same in [36]. For DBLP, Aminer, IMDB and Yelp, the batch size is set as 1024
and the sizes of samples are 128, 256, 512 and 1024. For Alibaba dataset, the batch size is set as 4096 and the sizes
of samples are 512, 1024, 2048 and 4096. For DBLP, Aminer, IMDB, Yelp and Alibaba, the maximum iteration is
respectively set as 100, 100, 500, 5 and 5.
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Table 3. Micro/Macro-F1 scores for node classification on DBLP. Excluding HIGE and HAN, the best model is bolded and the
second best is underlined.

Micro-F1 Macro-F1
Sampling size 128 256 512 1024 128 256 512 1024
per batch ∼ 3% ∼ 6% ∼ 12% ∼ 24% ∼ 3% ∼ 6% ∼ 12% ∼ 24%
HIGE-Nil 0.2411 (intuitive lower bound) 0.2403 (intuitive lower bound)
HIGE 0.8821 (intuitive upper bound) 0.8766 (intuitive upper bound)HAN 0.8908 0.8825

GraphSage 0.2060 0.2067 0.2485 0.2505 0.2011 0.2034 0.2346 0.2399
Fast-GCN 0.2187 0.2453 0.2601 0.2709 0.2097 0.2189 0.2350 0.2363
AS-GCN 0.2739 0.2778 0.2808 0.2813 0.2465 0.2498 0.2564 0.2604
Unif-TD 0.2779 0.2667 0.3170 0.3438 0.2425 0.2220 0.2344 0.3261
Unif-TF 0.3058 0.2857 0.2656 0.3103 0.2334 0.2327 0.2598 0.2634
VarR-TD 0.7645 0.8147 0.8426 0.8393 0.7558 0.8086 0.8316 0.8204
VarR-TF 0.8636 0.8795 0.8991 0.8944 0.8584 0.8730 0.8920 0.8882

VarR-TF-SN 0.8648 0.8694 0.8962 0.8976 0.8609 0.8662 0.8916 0.8906
VarR-TF-AS 0.8828 0.9073 0.9017 0.9062 0.8778 0.9020 0.8962 0.9009

All programs are implemented in Python 3.6 using TensorFlow 1.12.0. The experiments are conducted on a
Linux server with two Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz, two Nvidia Tesla M40 and 128GB RAM. The
codes of Graphsage, Fast-GCN and AS-GCN are provided by the authors of the original papers.

5.3 Empirical Validation
We perform empirical validation on both the relatively small Aminer, DBLP and IMDB datasets, as well as the
much larger Yelp review graph and Alibaba interaction graph. Note that the non-HIGE-based baselines, Graphsage,
Fast-GCN and AS-GCN are to deal with node classification, and these baselines can only work on Aminer and
DBLP; they cannot complete on IMDB, Yelp and Alibaba where the task is link prediction. Furthermore, they are
likely to suffer from insufficient memory on the large-scale Yelp and Alibaba graph even if we implement the
modified models for the task of link prediction.

5.3.1 Effectiveness. We report the results in Tables 3- 7, respectively. We progressively sample more neighbors
per batch and the sampling rate ranges from about 1.5% to 24% on smaller DBLP, Aminer, and IMDB, 3% to 25%
on the larger Yelp graph, and 1.25% to 10% on the larger Alibaba graph. We make the following observations.

• VarR-TF-AS generally achieves the best performance on the four datasets for node classification and link
prediction, whereas VarR-TF-SN comes as a close competitor. In particular, VarR-TF-AS performs as well as
or even better than the original HIGE. This phenomenon is reasonable. On the one hand, HIGE aggregates
information from whole neighbors which may introduce some noisy information while our sampling strategies
are to sample valuable neighbors for training. On the other hand, we optimize the sampler by reducing the
variance loss which enhances the similarity limitation between the sampled neighbors and its target nodes.

• Compared to the corresponding uniform samplers, the variance reduction samplers guarantee more stable esti-
mators and thus produce better results. Furthermore, in the VarR-* methods, type-fusion strategies outperform
type-dependent methods, as the former consider all types jointly rather than independently, and reduce the
variance of the whole batch rather than a single type.
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Table 4. Micro/Macro-F1 scores for node classification on Aminer. Excluding HIGE and HAN, the best method is bolded and
the second best is underlined.

Micro-F1 Macro-F1
Sampling size 128 256 512 1024 128 256 512 1024
per batch ∼ 3% ∼ 6% ∼ 12% ∼ 24% ∼ 3% ∼ 6% ∼ 12% ∼ 24%
HIGE-Nil 0.1990 (intuitive lower bound) 0.1961 (intuitive lower bound)
HIGE 0.9646 (intuitive upper bound) 0.9593 (intuitive upper bound)HAN 0.9512 0.9508

GraphSage 0.2060 0.2067 0.2125 0.2119 0.2011 0.2034 0.2036 0.2073
Fast-GCN 0.2117 0.2244 0.2318 0.2361 0.1850 0.1898 0.2116 0.2119
AS-GCN 0.2361 0.2307 0.2390 0.2390 0.2005 0.2028 0.2004 0.2068
Unif-TD 0.3043 0.4123 0.4256 0.4221 0.2638 0.3907 0.3553 0.3962
Unif-TF 0.1780 0.2229 0.3785 0.6296 0.1266 0.1952 0.3081 0.5727
VarR-TD 0.8086 0.7990 0.8971 0.9123 0.7913 0.7894 0.8945 0.9133
VarR-TF 0.9461 0.9671 0.9712 0.9675 0.9424 0.9651 0.9696 0.9664

VarR-TF-SN 0.9659 0.9643 0.9612 0.9684 0.9637 0.9629 0.9631 0.9603
VarR-TF-AS 0.9650 0.9676 0.9705 0.9687 0.9649 0.9667 0.9602 0.9671

Table 5. F1 and AUC scores for link prediction on the IMDB graph. Excluding HIGE and HAN, the best method is bolded and
the second best is underlined

F1 ROC-AUC
Sampling size 128 256 512 1024 128 256 512 1024
per batch ∼ 1.5% ∼ 3% ∼ 6% ∼ 12% ∼ 1.5% ∼ 3% ∼ 6% ∼ 12%
HIGE-Nil 0.2484 (intuitive lower bound) 0.5225 (intuitive lower bound)
HIGE 0.3325 (intuitive upper bound) 0.6240 (intuitive upper bound)HAN 0.3292 0.6215

Unif-TD 0.2657 0.2500 0.2671 0.2535 0.5313 0.5556 0.5421 0.5127
Unif-TF 0.2500 0.2639 0.2639 0.2682 0.5323 0.5230 0.5279 0.5227
VarR-TD 0.2603 0.2614 0.2694 0.2637 0.5407 0.5536 0.5604 0.5690
VarR-TF 0.2983 0.3163 0.3212 0.3390 0.5959 0.6073 0.6135 0.6244

VarR-TF-SN 0.3022 0.3054 0.3205 0.3288 0.5986 0.5992 0.6097 0.6228
VarR-TF-AS 0.3116 0.3122 0.3233 0.3300 0.6048 0.6077 0.6128 0.6232

• As the sampling size increases, it is not surprising that almost all sampling strategies tend to perform better. In
particular, when we sample smaller neighborhoods (like 128 on Aminer and 1024 on Alibaba), VarR-TF-AS
almost reaches better performance than the full HIGE model (in terms of micro-F1 and macro-F1 on Aminer
and AUC on the Alibaba graph). Note that the full HIGE and HAN model does not resort to any sampling
approximation, and thus can be deemed an intuitive upper bound.

• Our proposed general HIGE can perform competitively with or even better than HAN on the five datasets.
However, HAN has higher time complexity. For example, for the large-scale Alibaba dataset, the time cost of
HAN (about 1 day) is quite larger than HIGE (about 5 hours).

• All sampling strategies for HIGE, including those with uniform samplers, perform significantly better than
GCN-based models (Fast-GCN and AS-GCN) and Graphsage. On the one hand, sampling for HIGE takes
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Table 6. F1 and AUC scores for purchase prediction on the Yelp graph. Excluding HIGE and HAN, the best method is bolded
and the second best is underlined.

F1 ROC-AUC
Sampling size 128 256 512 1024 128 256 512 1024
per batch ∼ 3% ∼ 6% ∼ 13% ∼ 25% ∼ 3% ∼ 6% ∼ 13% ∼ 25%
HIGE-Nil 0.4128 (intuitive lower bound) 0.6329 (intuitive lower bound)
HIGE 0.5034 (intuitive upper bound) 0.7041 (intuitive upper bound)HAN 0.4992 0.7005

Unif-TD 0.4180 0.4144 0.4148 0.4414 0.5913 0.6487 0.6529 0.6575
Unif-TF 0.4226 0.4177 0.4154 0.4397 0.6466 0.6509 0.6531 0.6545
VarR-TD 0.4829 0.4970 0.5000 0.5067 0.6675 0.6779 0.6819 0.6950
VarR-TF 0.4786 0.5034 0.5124 0.5184 0.6789 0.6849 0.7010 0.7107

VarR-TF-SN 0.4793 0.4950 0.5190 0.5201 0.6866 0.6826 0.7027 0.7105
VarR-TF-AS 0.4931 0.5036 0.5128 0.5189 0.6869 0.6914 0.7085 0.7117

Table 7. F1 and AUC scores for purchase prediction on the Alibaba graph. Excluding HIGE and HAN, the best method is
bolded and the second best is underlined.

F1 ROC-AUC
Sampling size 512 1024 2048 4096 512 1024 2048 4096
per batch ∼ 1.25% ∼ 2.5% ∼ 5% ∼ 10% ∼ 1.25% ∼ 2.5% ∼ 5% ∼ 10%
HIGE-Nil 0.3994 (intuitive lower bound) 0.5134 (intuitive lower bound)
HIGE 0.5663 (intuitive upper bound) 0.7715 (intuitive upper bound)HAN 0.5618 0.7704

Unif-TD 0.4017 0.4226 0.4352 0.4371 0.5768 0.5826 0.5908 0.5924
Unif-TF 0.4008 0.4122 0.4125 0.4451 0.5731 0.5790 0.5862 0.5977
VarR-TD 0.4841 0.5003 0.5274 0.5682 0.6207 0.6504 0.6925 0.7475
VarR-TF 0.5769 0.5908 0.5709 0.5833 0.7648 0.7671 0.7653 0.7796

VarR-TF-SN 0.5780 0.5883 0.5802 0.5798 0.7669 0.7625 0.7660 0.7742
VarR-TF-AS 0.5729 0.5913 0.5806 0.5844 0.7674 0.7641 0.7676 0.7799

the graph heterogeneity into consideration, whereas the two GCN-based models do not make use of such
information. On the other hand, the sampling size or number of layers of Fast-GCN and AS-GCN may be not
enough. However, even under current settings, Fast-GCN and AS-GCN are already several times slower than
our method, as we shall see in the efficiency study.

5.3.2 Efficiency. We first investigate the efficiency of our sampling strategies in the context of the sampled edges.
As shown in Fig. 3, the sampled edges increase when more neighbors are sampled. Nevertheless, even with a large
sample size of 4096 per batch, only very few edges are sampled. In particular, our sampling strategies VarR-TF-AS
and VarR-TF-SN require 93.36% and 92.55% fewer edges than the full HIGE model on the large-scale Alibaba
graph, respectively, and yet they achieve better performance.

Second, similar observations can be made on the memory cost shown in Fig. 4, where VarR-TF-AS/VarR-TF-SN
incur 93.22%/92.48% less memory cost on the Alibaba, respectively. Further note that the differences in both
the number of edges and memory cost are more prominent on the larger Alibaba graph, indicating excellent
scalability of our sampling strategies.
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Fig. 3. Average sampled edges per batch of training.

Fig. 4. Average memory cost per batch of training.

(a) DBLP (b) Aminer (c) IMDB (d) Yelp (e) Alibaba

Fig. 5. Average running time per iteration of training.

Third, in terms of the running time, VarR-TF-AS and VarR-TF-SN require less time than HIGE to attain close
performance on the five datasets. In particular, on the smaller DBLP, Aminer and IMDB datasets, VarR-TF-AS
incur by up to 93.36% less memory cost, compared to HIGE, and almost half the time cost compared to Graphsage.
On IMDB, Yelp and Alibaba datasets, the original Graphsage, Fast-GCN and AS-GCN fail to work since the three
methods deal with node classification rather than link prediction. Furthermore, these sampling models which
require all edges to be preloaded would suffer from the extremely large memory cost and time cost when dealing
with large-scale graphs. In summary, compared to HIGE, our models incur by up to 86.25%, 84.39%, 67.31%, 65.24%
and 58.32% less time cost on DBLP, Aminer, IMDB, and the larger Yelp and Alibaba graph, respectively. Notice
that since HAN is an supervised model where the time cost is related to labels, it could be unfair to compare
the time cost of HAN and HIGE. HAN is faster than HIGE when dealing with smaller DBLP, Aminer and IMDB,
while HIGE is quite faster than HAN on the large Alibaba dataset. For instance, when dealing with large-scale
Alibaba dataset, the time cost is quite larger (about 1 day) than HIGE (about 5 hours).
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Fig. 6. The convergence of training.

Fourth, by analyzing the convergence of VarR-TF-AS and the original HIGE shown in Fig. 6, it is obvious that
our VarR-TF-AS has quick convergence, especially on the denser Aminer and DBLP datasets because of quite
lower time cost when achieving similar performance.

6 CONCLUSIONS
In this paper, we focus on the problem of accelerating large-scale heterogeneous graph embeddingwith importance
sampling. There are two main challenges, one of which is how to design an effective estimator that work with
heterogeneous neighborhood, and the other is how to balance the structural information of each target node in its
own neighborhood, with the common neighborhood for all target nodes in a batch. To address the challenges, in
this paper, we design various importance sampling strategies, namely, type-dependent and type-fusion samplers,
with self-normalized and adaptive estimator. Furthermore, We conduct extensive experiments on four public
real-world dataset, including the Aminer dataset and the large-scale E-commerce interaction graph. We analyze
the experimental results on various aspects including effectiveness, memory cost and time cost. The experimental
results have shown the advantages of our strategies in both effectiveness and efficiency.
Apart from the static edge information of HIGs, the dynamics of interactions also indicate the importance

where recent interactions play more important roles. We leave dynamic neighborhood sampling of HIGs as our
future work.
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