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ABSTRACT
Cold-start recommendation has been a challenging problem due

to sparse user-item interactions for new users or items. Existing

efforts have alleviated the cold-start issue to some extent, most of

which approach the problem at the data level. Earlier methods often

incorporate auxiliary data as user or item features, while more re-

cent methods leverage heterogeneous information networks (HIN)

to capture richer semantics via higher-order graph structures. On

the other hand, recent meta-learning paradigm sheds light on ad-

dressing cold-start recommendation at the model level, given its

ability to rapidly adapt to new tasks with scarce labeled data, or

in the context of cold-start recommendation, new users and items

with very few interactions. Thus, we are inspired to develop a novel

meta-learning approach named MetaHIN to address cold-start rec-

ommendation on HINs, to exploit the power of meta-learning at the

model level and HINs at the data level simultaneously. The solution

is non-trivial, for how to capture HIN-based semantics in the meta-

learning setting, and how to learn the general knowledge that can

be easily adapted to multifaceted semantics, remain open questions.

In MetaHIN, we propose a novel semantic-enhanced tasks construc-

tor and a co-adaptation meta-learner to address the two questions.

Extensive experiments demonstrate that MetaHIN significantly out-

performs the state of the arts in various cold-start scenarios. (Code

and dataset are available at https://github.com/rootlu/MetaHIN.)
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1 INTRODUCTION
Recommender systems [3, 11, 31] have been widely deployed in

various online services, such as E-commerce platforms and news

portals, to address the issue of information overload for users. At

their core, they typically adopt collaborative filtering, aiming to

estimate the likelihood of a user adopting an item based on the

interaction history like past purchases and clicks. However, the

interaction data of new users or new items are often very sparse,

leading to the so-called cold-start scenarios [35] in which it becomes

challenging to learn effective user or item representations.

To alleviate the cold-start problem, a common approach is to

integrate auxiliary data to enhance the representations of new

users or items, where user or item contents (e.g., age and gender of

users) are often exploited [17, 35]. More recently, heterogeneous

information networks (HIN) [23] have been leveraged to enrich

user-item interactions with complementary heterogeneous infor-

mation. As shown in Fig. 1(a), a toy HIN can be constructed for

movie recommendation, which captures how the movies are re-

lated with each other via actors and directors, in addition to the

existing user-movie interactions. On the HIN, higher-order graph

structures like meta-paths [25], a relation sequence connecting two

objects, can effectively capture semantic contexts. For instance, the

meta-path User–Movie–Actor–Movie or UMAM encodes the seman-

tic context of “movies starring the same actor as a movie rated by

the user”. Together with the content-based methods, HIN-based

methods [11, 34] also assume a data-level strategy to alleviate the

cold-start problem, as illustrated in Fig. 1(b).

On another line, at the model level, the recent episodic meta-

learning paradigm [9] has offered insights into modeling new users

or items with scarce interaction data [27]. Meta-learning focuses on

deriving general knowledge (i.e., a prior) across different learning

tasks, so as to rapidly adapt to a new learning task with the prior

and a small amount of training data. To some extent, cold-start

recommendation can be formulated as a meta-learning problem,

where each task is to learn the preferences of one user. From the

tasks of existing users, the meta-learner learns a prior with strong

generalization capacity during meta-training, such that it can be
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Figure 1: An example of HIN and existing data or model-
level alleviation for cold-start recommendation.

easily and quickly adapted to the new tasks of cold-start users

with scarce interaction data during meta-testing. As illustrated

in Fig. 1(c), the cold-start user u3 (with only one movie rating)

can be adapted from the prior θ in meta-testing, where the prior

is derived by learning how to adapt to existing users u1 and u2
in meta-training. As such, a limited number of recent studies [6,

16, 19] have leveraged meta-learning for the cold-start problem

and achieved promising results. However, they typically involve a

direct adoption of meta-learning frameworks (e.g., MAML [9]), but

neglect to explore the unique heterogeneous graph structures and

semantics on HINs for cold-start recommendation.

Challenges and present work. We propose to address the cold-

start recommendation at both data and model levels, in which learn-

ing the preference of each user is regarded as a task inmeta-learning,

and a HIN is exploited to augment data. However, meta-learning

on HINs is non-trivial, presenting us with two key challenges. (1)

How to capture the semantics on HINs in the meta-learning setting?
Existing methods either model HINs under traditional supervised

learning settings [11, 22], or ignore the rich structures and seman-

tic contexts in meta-learning settings [16, 19]. Hence, it is vital

to re-examine the design of user-based tasks, to enrich user-item

interaction data with higher-order semantics. (2) How to learn the
general knowledge across tasks, particularly in a way that can be eas-
ily generalized to work with multifaceted heterogeneous semantics?
In existing meta-learning methods for cold-start recommendation

[6, 16], they perform adaptations for new tasks (e.g., new users)

from a globally shared prior. In other words, the prior is designed

for generalization to different tasks. However, there also exist multi-

faceted semantics (e.g., movies directed by the same director, or

starring the same actor) brought by HINs. Hence, it is crucial for

the meta-learned prior to be capable of generalizing to different

semantic facets within each task too.

The above challenges motivate us to develop aMeta-learning ap-
proach to cold-start recommendation onHeterogeneous Information

Networks, namedMetaHIN. To address the first challenge, we pro-

pose to augment the task for each user withmultifaceted seman-
tic contexts. That is, in a task of a specific user, besides considering
the items directly interacted with the user, we also introduce items

that are semantically related to the user via higher-order graph

structures, i.e., meta-paths. These related items form the seman-

tic contexts of each task, which can be further differentiated into

multiple facets as implied by different meta-paths. For the second

challenge, we propose a co-adaptation meta-learner, which is

equipped with both semantic-wise adaptation and task-wise adap-
tation. Specifically, the semantic-wise adaptation learns a unique

semantic prior for each facet. While the semantic priors are derived

from different semantic spaces, they are regulated by a global prior

to capture the general knowledge of encoding contexts on a HIN.

Furthermore, the task-wise adaptation is designed for each task (i.e.,

user), which updates the preference of each user from the various

semantic priors, such that tasks sharing the same facet of semantic

contexts can hinge on a common semantic prior.

Contributions. To summarize, this work makes the following

major contributions. (1) This is the first attempt to exploit meta-

learning on HINs for cold-start recommendation, which alleviates

the cold-start problem at both data and model levels. (2) We propose

a novel method MetaHIN, which leverages multifaceted semantic

contexts and a co-adaption meta-learner in order to learn finer-

grained semantic priors for new tasks in both semantic and task-

wise manners. (3) We conduct extensive empirical studies on three

real-world datasets on different cold-start scenarios, and demon-

strate that MetaHIN consistently and significantly outperforms

various state of the arts.

2 RELATEDWORK
Cold-start Recommendation. While collaborative filtering [17,

31] has achieved considerable success in recommendation systems,

difficulty often arises in dealing with new users or items with

sparse user-item interactions, known as cold-start recommenda-

tion. Traditional cold-start solutions rely on data augmentation, by

incorporating user or item side information [15, 29, 35]. Beyond

these content-based features and user-item interactions, richer het-

erogeneous data that captures the interactions between items (e.g.,

movies) and other objects (e.g., actors) has been exploited in the

form of a heterogeneous information network (HIN). On HINs, one

major line of work leverages higher-order graph structures such

as meta-paths [25] or meta-graphs [7, 8] to explore heterogeneous

semantics in recommendation settings [11, 22]. Some methods also

integrate review texts, images or knowledge graphs to further en-

hance user and item representations [30, 34]. Additionally, some

transfer learning-based methods use features from a source domain

to apply to the target domain [12, 13], with the assumption that a

source domain is available and users or items can be aligned in both

domains. Although these methods achieve promising performances,

they only alleviate the cold-start problem at the data level, which

heavily relies on the availability and quality of auxiliary data.

Meta-learning. Also known as learning to learn, meta-learning

intends to learn the general knowledge across similar learning tasks,

so as to rapidly adapt to new tasks based on a few examples [28].

Among previous work on meta-learning, metric-based methods

[24, 26] learn a metric or distance function over tasks, while model-

based methods [18, 21] aim to design a architecture or training

process for rapid generalization across tasks. Lastly, optimization-

based methods directly adjust the optimization algorithm to enable

quick adaptation with just a few examples [9, 32].



The success of meta-learning in few-shot settings (i.e., each task

only has a few labeled examples) has shed light on the problem of

cold-start recommendation [6, 16, 27]. Specifically, Vartak et. al. [27]

present a metric-based approach to address the item cold-start prob-

lem. The work of Lee et. al. [16] applies the MAML framework [9],

which rapidly adapts to new users or items based on sparse inter-

action history. Meta-learning with MAML has also been applied

to scenario-based cold-start problems, which formulates the rec-

ommendation scenario (e.g., baby and outdoor products are two

different scenarios) as a learning task [6]. Moreover, some stud-

ies focus on specific applications, including CTR prediction [19]

and clinical risk prediction [33]. Unfortunately, these methods do

not consider the unique multifaceted semantic contexts enabled by

HINs for cold-start recommendation.

3 PRELIMINARIES
In this section, we formalize the problem of HIN-based cold-start

recommendation, and introduce the meta-learning perspective for

recommendation.

3.1 Problem Formulation
Our study focuses onHIN-based cold-start recommendation, wherein

a HIN can be defined as follows [23].

Definition 1. Heterogeneous Information Network (HIN). A
HIN is defined as a graphG = {V ,E,O,R} with nodesV and edges E,
which belong to multiple types. Each node and edge are respectively
associated with a type mapping function φO : V → O and φR :

E → R, where O and R represent the set of object and relation types,
respectively. G is a HIN if |O | + |R | > 2.

On a HIN, meta-path [25] can capture complex semantics be-

tween objects via composite relations, as defined in the following.

Definition 2. Meta-path. Given a HIN with node types O and
relation types R, a meta-path of length l is defined as a composite

relation P = o1
r1
→ o2

r2
→ · · ·

rl
→ ol+1, where each oi ∈ O and ri ∈ R.

If there is only a single type of relation between two types, we omit
the relations and write a meta-path simply as P = o1o2 · · ·ol+1.

As a form of higher-order graph structure, meta-paths are widely

used to explore the semantics in a HIN [5]. Fig. 1(a) shows an

example of HIN for a movie recommender system, which consists

of four types of nodes, i.e., O = {User (U), Movie (M), Actor (A)
and Director (D)}. Meta-paths such as UMAM and UMDM define

different semantic relations: movies starring the same actor, or

directed by the same director, respectively. Moreover, u3m3a2m2 is

an instance of UMAM, and u3m3d1m1 is an instance of UMDM.

Definition 3. Cold-start Recommendation. On a HIN G =
{V ,E,O,R}, let VU ,VI ⊂ V denote the set of user and item objects,
respectively. Given a set of ratings between users and items, i.e., R =
{ru,i ≥ 0 : u ∈ VU , i ∈ VI , ⟨u, i⟩ ∈ E}, we aim to predict the unknown
rating ru,i < R between user u and item i . In particular, if u is a new
user with only a handful of existing ratings, i.e., |{ru′,i ∈ R : u ′ = u}|
is small, it is known as user cold-start (UC); similarly, if i is a new
item, it is known as item cold-start (IC); if both u and i are new, it
is known as user-item cold-start (UIC).

3.2 Meta-learning for Recommendation
Our work is inspired by the optimization-based meta-learning

[9, 32], which optimizes globally shared parameters (i.e., prior

knowledge) over several tasks, so as to rapidly adapt to a new

task with just one or a few gradient steps based on a small num-

ber of examples. In recommendation [16], a task Tu = (Su ,Qu )

involves one user u, consisting of a support set Su and a query set

Qu . We learn the prior shared across a set of meta-training tasks

T tr
, and adapt the prior to new tasks, known as meta-testing tasks

T te
, in order to predict item ratings.

Specifically, during meta-training, for each task Tu ∈ T
tr
, its

support and query sets contain items sampled from the set of items

rated by u, such that the support and query items are mutually

exclusive. Typically the support set only contains a few items. The

meta-learner adapts the global prior θ to task-specific parameters

w.r.t. the loss on the support set Su . Next, on the query set Qu , the

loss under the task-specific parameters is calculated and backward

propagated to update the global θ . Formally,

min

θ

∑
Tu ∈Ttr

L (θ − η∇θL (θ ,Su ) ,Qu ) , (1)

where L is the loss function, ∇ denotes the gradient, and η is

the meta-learning rate. Here θ − η∇θL(θ ,Su ) is the task-specific
parameters adapted to Tu after one gradient step from the global θ .

During meta-testing, for each task Tu ∈ T
te
, the support set still

contains a small number of items rated by u, but the query set only

contains items whose ratings are to be predicted. The meta-learner

adapts the prior θ learned during meta-training to Tu via one or a

few gradient steps w.r.t. its support set Su . The adapted parameters

are then applied to predict the ratings of items in the query set, i.e.,

{r̂u,i : i ∈ Qu }. Depending on how a meta-testing task is defined,

we address different cold-start scenarios: (1)UC, if the task is about
an new user not seen in meta-training; (2) IC, if it is an existing

user but the items in the support and query sets are new items; (3)

UIC, if both the user and items are not observed in meta-training.

4 METHODOLOGY
In this section, we present a novel method MetaHIN for cold-start

recommendation, based on meta-learning on HINs.

4.1 Overview of MetaHIN
As illustrated in Fig. 2, the proposed MetaHIN consists of two

components: semantic-enhanced task constructor in Fig. 2(a) and

co-adaptation meta-learner in Fig. 2(b).

First, existingmeta-learningmethods for recommendation [6, 16]

only consider user-item interactions, but a HIN often carries valu-

able semantic information. Thus, we design a semantic-enhanced

task constructor to augment the support and query sets of user

tasks with heterogeneous semantic contexts, which comprise of items

related to the user through meta-paths on a HIN. The semantic con-

texts are multifaceted in nature, such that items related via each

meta-path represents a different facet of heterogeneous semantics.

Second, existing methods only adopt task-wise adaptation from

a global prior θ . However, as the semantic contexts are multifaceted,

it is also crucial to perform semantic-wise adaptation, in order to

adapt the global prior to finer-grained semantic priors for different
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Figure 2: Illustration of the meta-training procedure of a task in MetaHIN. (a) Semantic-enhanced task constructor, where
the support and query sets are augmented with meta-path based heterogeneous semantic contexts. (b) Co-adaptation meta-
learner, with semantic- and task-wise adaptations on the support set, while the global prior θ is optimized on the query set.
During meta-testing, each task follows the same procedure except updating the global prior.

facets (i.e., meta-paths) in a task. The global prior θ captures the

general knowledge of encoding contexts for recommendation, and

can be materialized in the form of a base model fθ . Thus, our co-
adaptation meta-learner performs both semantic- and task-wise

adaptions on the support set, and further optimizes the global prior

on the query set.

4.2 Semantic-enhanced Task Constructor
As motivated, towards effective meta-learning on HINs, it is im-

portant to incorporate multifaceted semantic contexts into tasks.

Given a user u with task Tu = (Su ,Qu ), the semantic-enhanced

support set is defined as

Su = (S
R
u ,S

P
u ), (2)

where SRu is a set of items that has been rated by user u, and SPu
represents the semantic contexts based on a set of meta-paths P.

For new users in cold-start scenarios, the set of rated items SRu
is usually small, i.e., a new user only has a few ratings. For meta-

training tasks, we follow previous work [16] to construct SRu by

sampling a small subset of items rated by u, i.e., {i ∈ VI : ru,i ∈ R},
in order to simulate new users.

On the other hand, the semantic contexts SPu is employed to

encode multifaceted semantics into the task. Specifically, assume a

set of meta-paths P, such that each path p ∈ P starts with User–
Item and ends with Item with a length up to l . For example, in

Fig. 1(a), P = {UM,UMAM,UMDM,UMUM} if we set l = 3. For

each user-item interaction ⟨u, i⟩, we define the semantic context of

⟨u, i⟩ induced by meta-path p as follows:

C
p
u,i = {j : j ∈ items reachable along p starting from u–i}. (3)

For instance, the semantic context of ⟨u2,m2⟩ induced by UMAM
is {m2,m3, . . .}. Since in each task u may interact with multiple

items, we build the p-induced semantic context for the task Tu as

S
p
u =

⋃
i ∈SRu

C
p
u,i . (4)

Finally, accounting for all meta-paths in P = {p1,p2, ...,pn }, the

semantic contexts SPu of task Tu is formulated as

SPu = (S
p1
u ,S

p2
u , . . . ,S

pn
u ). (5)

In essence, SPu is the set of items that are reachable from user u via

all items he/she has rated along the meta-paths, which incorporates

multifaceted semantic contexts such that each meta-path represents

one facet. As shown in Fig. 2(a), following themeta-pathUMAM, the

reachable items of user u2 are {m2,m3, . . .}, which are the movies

starring the same actor of movies that u2 has rated in the past. That

is, the semantic context induced by UMAM incorporates movies

starring the same actor as a facet of user preferences, which makes

sense since the user might be a fan of an actor and prefers most

movies played by the actor.

Likewise, we can construct the semantic-enhanced query set

Qu = (Q
R
u ,Q

P
u ). In particular, QRu contains items rated by u for

calculating the task loss in meta-training, or items with hidden

rating for making predictions in meta-testing; QPu captures the

semantic contexts induced by meta-paths P. Note that in a task Tu ,

the items with ratings in the support and query sets are mutually

exclusive, i.e., SRu ∩ Q
R
u = ∅.

4.3 Co-adaptation Meta-learner
Given the semantic-enhanced tasks, we design a co-adaptation

meta-learner with both semantic- and task-wise adaptations in

order to learn fine-grained prior knowledge. The global prior can

be abstracted as a base model to encode the general knowledge of

how to learn with contexts on HINs, which can be further adapted

to different semantic facets within a task.

4.3.1 Base Model. As shown in Fig. 2(b), the base model fθ in-

volves context aggregation дϕ to derive user embeddings, and pref-
erence prediction hω to estimate the rating score, i.e., fθ = (hω ,дϕ ).

In context aggregation, the user embeddings are aggregated from

his/her contexts, which are his/her related items via direct interac-

tions or meta-paths (i.e., semantic contexts), since user preferences

are reflected in items. Following [16], we initialize the user and



item embeddings based their features (or an embedding look up

if there are no features), say eu ∈ RdU for user u and ei ∈ RdI
for item i where dU ,dI are the embedding dimensions. Details of

the embedding initialization can be found in the supplement A.1.1.

Subsequently, we obtain user u’s embedding xu as follows:

xu = дϕ (u,Cu ) = σ
(
mean({Wej + b : j ∈ Cu })

)
, (6)

where Cu denotes the set of items related to user u via direct in-

teractions (i.e., the rated items) or meta-paths (i.e., their induced

semantic contexts), mean(·) is mean pooling, and σ is the activation

function (we use LeaklyReLU). Here дϕ is the context aggregation

function parameterized by ϕ = {W ∈ Rd×dI , b ∈ Rd }, which are

trainable to distill semantic information for user preferences. xu
can be further concatenated with u’s initial embedding eu , when
user features are available.

In preference prediction, given user u’s embedding xu and item

i’s embedding ei , we estimate the rating of user u on the item i as:

r̂ui = hω (xu , ei ) = mlp(xu ⊕ ei ), (7)

where mlp is a two-layer multilayer perceptron, and ⊕ denotes con-

catenation. Here hω is the rating prediction function parameterized

by ω, which contains the weights and biases in mlp. Finally, we

minimize the following loss for user u to learn his/her preferences:

Lu =
1

|Ru |

∑
i ∈Ru (rui − r̂ui )

2, (8)

where Ru = {i : rui ∈ R} denotes the set of items rated by u, and
rui is the actual rating of u on item i .

Note that the base model fθ = (дϕ ,hω ) is a supervised model

for recommendation, which typically require a large number of

example ratings to achieve reasonable performance, which is not

upheld in the cold-start scenario. As motivated, we recast the cold-

start recommendation as a meta-learning problem. Specifically, we

abstract the base model fθ = {дϕ ,hω } as encoding the prior knowl-
edge θ = {ϕ,ω} of how to learn user preferences from contexts on

HINs. Next, we detail the proposed co-adaptation meta-learner to

learn the prior knowledge.

4.3.2 Co-adaptation. The goal of the co-adaptation meta-learner

is to learn the prior knowledge θ = (ϕ,ω), which can quickly adapt

to a new user task with just a few example ratings. As discussed

in Fig. 2(a), each task is augmented with multifaceted semantic

contexts. Thus, the prior should not only encode the global knowl-

edge shared across tasks, but also become capable of generalizing

to different semantic facets within each task. To this end, we equip

the meta-learner with semantic- and task-wise adaptations.

Semantic-wise Adaptation. The semantic-enhanced support

set Su of the task Tu is associated with semantic contexts induced

by different meta-paths (e.g., UMAM and UMDM in Fig. 2), where

each meta-path represents one semantic facet. The semantic-wise

adaptation evaluates the loss based on the semantic context induced

by a meta-path p (i.e.,S
p
u ). With one (or a few) gradient descent step

w.r.t. the p-specific loss, the global context prior ϕ, which encodes

how to learn with contexts on a HIN, is adapted to the semantic

space induced by the meta-path p.

Formally, given a taskTu of useru, the support setSu = (S
R
u ,S

P
u )

is augmented with semantic contextsSPu , comprising various facets

S
pi
u induced by different meta-paths pi as in Eq. (5). Given a meta-

path p ∈ P, user u’s embedding in the semantic space of p is

xpu = дϕ (u,S
p
u ). (9)

In this semantic space of p, we can further calculate the loss on the

support set of rated items SRu in task Tu as

LTu (ω, x
p
u ,S

R
u ) =

1

|SRu |

∑
i ∈SRu
(rui − hω (x

p
u , ei ))2, (10)

where hω (x
p
u , ei ) represents the predicted rating of user u on item

i in the meta-path p-induced semantic space.

Next, we adapt the global context prior ϕ w.r.t. the loss in each

semantic space of p in task Tu with one gradient descent step, to

obtain the semantic prior ϕ
p
u . Thus, the meta-learner learns more

fine-grained prior knowledge for various semantic facets, as follows.

ϕ
p
u = ϕ − α

∂LTu (ω, x
p
u ,S

R
u )

∂ϕ
= ϕ − α

∂LTu (ω, x
p
u ,S

R
u )

∂xpu

∂xpu
∂ϕ
, (11)

where α is the semantic-wise learning rate, and xpu = дϕ (u,S
p
u ) is

a function of ϕ.

Task-wise Adaptation. In the semantic space of meta-pathp with

adapted semantic prior ϕ
p
u , the task-wise adaptation further adapts

the global prior ω, which encodes how to learn rating predictions

of u, to the task Tu with one (or a few) gradient descent step.

The semantic prior ϕ
p
u subsequently updates user u’ embeddings

in the semantic space of p on the support set to xp ⟨S ⟩u = дϕpu
(u,S

p
u ),

which further transforms the global prior ω to the same space:

ωp = ω ⊙ κ(xp ⟨S ⟩u ), (12)

where ⊙ is the element-wise product and κ(·) serves as a trans-

formation function realized with a fully connected layer (see its

detailed form in the supplement A.1.2). Intuitively, ω is gated into

the current p-induced semantic space. We then adapt ωp to the task

Tu with one gradient descent step:

ω
p
u = ωp − β

∂LTu (ω
p , xp ⟨S ⟩u ,SRu )

∂ωp
, (13)

where β is the task-wise learning rate.

Optimization. With the semantic- and task-wise adaptations, we

have adapted the global prior θ to the semantic- and task-specific

parameters θ
p
u = {ϕ

p
u ,ω

p
u } in the p-induced semantic space of task

Tu . Given a set of meta-paths P, the meta-learner is trained by

optimizing the performance of the adapted parameters θ
p
u on the

query set Qu in all semantic spaces of P across all meta-training

tasks. That is, as shown in Fig. 2(b), the global prior θ = (ϕ,ω) will
be optimized through backpropgation of the query loss:

min

θ

∑
Tu ∈Ttr

LTu (ωu , xu ,Q
R
u ), (14)

where ωu and xu are fused from multiple semantic spaces (i.e.,

meta-paths in P). Specifically,

ωu =
∑
p∈P apω

p
u , xu =

∑
p∈P apx

p ⟨Q ⟩
u , (15)

where ap = softmax(−LTu (ω
p
u , x

p ⟨Q ⟩
u ,QRu )) is the weight of the p-

induced semantic space, and xp ⟨Q ⟩u = дϕpu
(u,Q

p
u ) is u’s embedding

aggregated on the query set. Since the loss value reflects the model



performance [2], it is intuitive that the larger the loss value in a

semantic space, the smaller the corresponding weight should be.

In summary, the co-adaption meta-learner aims to optimize the

global prior θ across several tasks, in such a way that the query

loss of each meta-training task Tu using the adapted parameters

{θ
p
u : p ∈ P} can be minimized (i.e., “learning to learn"); it does not

directly update the global prior using task data. It particular, with

the co-adaption mechanism, we adapt the parameters not only to

each task, but also to each semantic facet within a task.

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer three

research questions: (RQ1) How does MetaHIN perform compared

to state-of-the-art approaches? (RQ2) How does MetaHIN benefit

from the multifaceted semantic contexts and co-adaptation meta-

learner? (RQ3) How is MetaHIN impacted by its hyper-parameters?

5.1 Experimental Setup
Dataset. We conduct experiments on three benchmark datasets,

namely, DBook
1
, MovieLens

2
, and Yelp

3
, from publicly accessible

repositories. Their statistics are summarized in Table 1.

For each dataset, we divide users and items into two groups:

existing and new, according to user joining time (or first user ac-

tion time) and item releasing time. Then, we split each dataset into

meta-training and meta-testing data. (1) The meta-training data

only contains existing user ratings for existing items. We randomly

select 10% of them as the validation set. (2) The rest are meta-testing

data, which are divided into three partitions corresponding to three

cold-start scenarios: (UC) User Cold-start, i.e., recommendation of

existing items for new users; (IC) Item Cold-start, i.e., recommen-

dation of new items for existing users; (UIC) User-Item Cold-start,

i.e., recommendation of new items for new users.

To construct the support and query sets of rated items (i.e., SRu
and QRu ), we follow previous work [16]. Specifically, we include

only users who rated between 13 and 100 items. Among the items

rated by a user u, we randomly select 10 items as the query set (i.e.,

|QRu | = 10), and the remaining items are used as the support set (i.e.,

SRu ). We will also study how the size of the support set affect the

performance in Sect. 5.2. Furthermore, to construct the semantic

contexts for the support and query sets, we take all meta-paths P

starting with User–Item and ending with Item with a length up to

3, as discussed in Sect. 4.2. For each meta-path p ∈ P, we construct

the p-induced semantic contexts (i.e., S
p
u and Q

p
u ).

More detailed description of the datasets and our preprocessing

are included in the supplement A.3.

Evaluation metrics. We adopt three widely-used evaluation

protocols [16, 22, 31], namely, mean absolute error (MAE), root

mean square error (RMSE), and normalized discounted cumulative

gain at rank K (nDCG@K ). Here we use K = 5.

Baselines. We compare our proposed MetaHIN with three cate-

gories of methods: (1) Traditional methods, including FM [20],

NeuMF [10] and GC-MC [1]. As they cannot handle HINs, we take

1
https://book.douban.com

2
https://grouplens.org/datasets/movielens/

3
https://www.yelp.com/dataset/challenge

Table 1: Statistics of the three datasets. The underlined node
type refers to the target item type for recommendation.

Datasets Node type #Nodes Edge type #Edges Sparsity

DBook

User (U)

Book (B)

Author (A)

10,592

20,934

10,544

UB

BA

UU

649,381

20,934

169,150

99.71%

MovieLens

User (U)

Movie (M)

Actor (A)

Director (D)

6,040

3,881

8,030

2,186

UM

MA

MD

1,000,209

15,398

4,210

95.73%

Yelp

User (U)

Business (B)

City (C)

Category (T)

51,624

34,199

510

541

UB

BC

BT

1,301,869

34,199

103,150

92.63%

the heterogeneous information (e.g., actor) as the features of users or

items. (2) HIN-based methods, including mp2vec [5] and HERec

[22]. Both methods are based on meta-paths, and we utilize the

same set of meta-paths as in our method. (3) Cold-start methods,
including content-based DropoutNet [29], as well as meta-learning-

based MeteEmb [19] and MeLU [16]. Since they do not handle HINs

either, we input the heterogeneous information as user or item

features following the original papers. We follow [16] to train the

non-meta-learning baselines with the union of rated items in all sup-

port and query sets from meta-training tasks. To handle new users

or items, we fine-tune the trained models with support sets and

evaluate on query sets in meta-testing tasks. More implementation

details of baselines are included in the supplement A.4.

Environment and Parameter Settings. Experimental environ-

ment and hyper-parameter settings are discussed in the supple-

ment A.5 and A.6, respectively. We will also study the impact of

hyper-parameters in MetaHIN in Sect. 5.4.

5.2 Performance Comparison (RQ1)
In this section, we empirically compare MetaHIN to several state-

of-the-art baselines, in three cold-start scenarios and the traditional

non-cold start scenario. Table 2 demonstrates the performance com-

parison between all methods w.r.t. four recommendation scenarios.

Figs. 3 and 4 further showcase performance analyses of MetaHIN.

Cold-start Scenarios. The first three parts of Table 2 presents

three cold-start scenarios (UC, IC and UIC). Overall, our MetaHIN

consistently yields the best performance among all methods on

three datasets. For instance, MetaHIN improves over the best base-

line w.r.t. MAE by 3.05-5.26%, 2.89-5.55%, and 2.22-5.19% on three

datasets, respectively. Among different baselines, traditional meth-

ods (e.g., MF, NeuMF and GC-MC) are least competitive despite

incorporating heterogeneous information as content features. Such

treatment of heterogeneous information is not ideal as higher-order

graph structures are lost. HIN-based methods perform better due to

the incorporation of such structures (i.e., meta-paths). Nevertheless,

supervised learning methods generally cannot perform effectively

given limited training data for new users and items.

On the other hand, meta-learning methods typically cope better

in such cases. In particular, the best baseline is consistently MeLU

or MeteEmb. However, they still underperform our MetaHIN in all



Table 2: Experimental results in four recommendation scenarios and on three datasets. A smaller MAE or RMSE value, and a
larger nDCG@5 value indicate a better performance. The best method is bolded, and second best is underlined.

Scenario Model

DBook MovieLens Yelp

MAE ↓ RMSE ↓ nDCG@5 ↑ MAE ↓ RMSE ↓ nDCG@5 ↑ MAE ↓ RMSE↓ nDCG@5 ↑

FM 0.7027 0.9158 0.8032 1.0421 1.3236 0.7303 0.9581 1.2177 0.8075

NeuMF 0.6541 0.8058 0.8225 0.8569 1.0508 0.7708 0.9413 1.1546 0.7689

GC-MC 0.9061 0.9767 0.7821 1.1513 1.3742 0.7213 0.9321 1.1104 0.8034

Existing items mp2vec 0.6669 0.8391 0.8144 0.8793 1.0968 0.8233 0.8972 1.1613 0.8235

for new users HERec 0.6518 0.8192 0.8233 0.8691 0.9916 0.8389 0.8894 1.0998 0.8265

(User Cold-start or UC) DropoutNet 0.8311 0.9016 0.8114 0.9291 1.1721 0.7705 0.8557 1.0369 0.7959

MeteEmb 0.6782 0.8553 0.8527 0.8261 1.0308 0.7795 0.8988 1.0496 0.7875

MeLU 0.6353 0.7733 0.8793 0.8104 0.9756 0.8415 0.8341 1.0017 0.8275

MetaHIN 0.6019 0.7261 0.8893 0.7869 0.9593 0.8492 0.7915 0.9445 0.8385

FM 0.7186 0.9211 0.8342 1.3488 1.8503 0.7218 0.8293 1.1032 0.8122

NeuMF 0.7063 0.8188 0.7396 0.9822 1.2042 0.6063 0.9273 1.1009 0.7722

GC-MC 0.9081 0.9702 0.7634 1.0433 1.2753 0.7062 0.8998 1.1043 0.8023

New items mp2vec 0.7371 0.9294 0.8231 1.0615 1.3004 0.6367 0.7979 1.0304 0.8337

for existing users HERec 0.7481 0.9412 0.7827 0.9959 1.1782 0.7312 0.8107 1.0476 0.8291

(Item Cold-start or IC) DropoutNet 0.7122 0.8021 0.8229 0.9604 1.1755 0.7547 0.8116 1.0301 0.7943

MeteEmb 0.6741 0.7993 0.8537 0.9084 1.0874 0.8133 0.8055 0.9407 0.8092

MeLU 0.6518 0.7738 0.8882 0.9196 1.0941 0.8041 0.7567 0.9169 0.8451

MetaHIN 0.6252 0.7469 0.8902 0.8675 1.0462 0.8341 0.7174 0.8696 0.8551

FM 0.8326 0.9587 0.8201 1.3001 1.7351 0.7015 0.8363 1.1176 0.8278

NeuMF 0.6949 0.8217 0.8566 0.9686 1.2832 0.8063 0.9860 1.1402 0.7836

GC-MC 0.7813 0.8908 0.8003 1.0295 1.2635 0.7302 0.8894 1.1109 0.7923

New items mp2vec 0.7987 1.0135 0.8527 1.0548 1.2895 0.6687 0.8381 1.0993 0.8137

for new users HERec 0.7859 0.9813 0.8545 0.9974 1.1012 0.7389 0.8274 0.9887 0.8034

(User-Item Cold-start DropoutNet 0.8316 0.8489 0.8012 0.9635 1.1791 0.7617 0.8225 0.9736 0.8059

or UIC) MeteEmb 0.7733 0.9901 0.8541 0.9122 1.1088 0.8087 0.8285 0.9476 0.8188

MeLU 0.6517 0.7752 0.8891 0.9091 1.0792 0.8106 0.7358 0.8921 0.8452

MetaHIN 0.6318 0.7589 0.8934 0.8586 1.0286 0.8374 0.7195 0.8695 0.8521

FM 0.7358 0.9763 0.8086 1.0043 1.1628 0.6493 0.8642 1.0655 0.7986

NeuMF 0.6904 0.8373 0.7924 0.9249 1.1388 0.7335 0.7611 0.9731 0.8069

GC-MC 0.8056 0.9249 0.8032 0.9863 1.2238 0.7147 0.8518 1.0327 0.8023

Existing items mp2vec 0.6897 0.8471 0.8342 0.8788 1.1006 0.7091 0.7924 1.0191 0.8005

for existing users HERec 0.6794 0.8409 0.8411 0.8652 1.0007 0.7182 0.7911 0.9897 0.8101

(Non-cold-start) DropoutNet 0.7108 0.7991 0.8268 0.9595 1.1731 0.7231 0.8219 1.0333 0.7394

MeteEmb 0.7095 0.8218 0.7967 0.8086 1.0149 0.8077 0.7677 0.9789 0.7740

MeLU 0.6519 0.7834 0.8697 0.8084 0.9978 0.8433 0.7382 0.9028 0.8356

MetaHIN 0.6393 0.7704 0.8859 0.7997 0.9491 0.8499 0.6952 0.8445 0.8477

scenarios. The reason might be that both of them only integrate

heterogeneous information as content features, without capturing

multifaceted semantics derived from higher-order structures like

meta-paths. In contrast, in MetaHIN, we perform semantic- and

task-wise co-adaptions, to effectively adapt to not only tasks, but

also different semantic facets within a task.

Non-cold-start Scenario. In the last part of Table 2, we investi-

gate the traditional recommendation scenario. Our MetaHIN is still

robust, outperforming all the baselines. While this is a traditional

scenario, the datasets are still very sparse in general (see Table 1).

Thus, incorporating the semantic-rich HINs can often alleviate the

sparsity challenge at the data level. MetaHIN further addresses the

problem at the model level with the co-adaptation meta-learner,

and thus can better deal with sparse data. Of course, compared to

cold-start scenarios, MetaHIN’s performance lift over the baselines

tend to be smaller as the sparsity issue is not as severe.

Performance Analysis. First, we compare MetaHIN to the non-

cold-start baselines (i.e., FM, NeuMF, GC-MC, mp2vec and HERec)

in the four recommendation scenarios. We calculate the improve-

ment of our MetaHIN over the baselines, and report the average im-

provement with standard deviations in Fig. 3. Generally, MetaHIN

achieves more significant performance improvements in harder

scenarios: non-cold-start ≺ UC ∼ IC ≺ UIC, which is intuitive.

Second, we vary the size constraint on the support set of rated

items, i.e., |SRu |, between 5 and 90. In Fig. 4, we showcase the hardest

scenario UIC, i.e., recommending new items for new users, among

the traditional method NeuMF, the HIN-based method HERec, the

meta-learning approach MeLU, and our MetaHIN. Overall, with

a larger support set (i.e., more training data), all methods tend to

achieve better MAE performances. However, when the support set

becomes smaller, the decrease in performance is the smallest on

MetaHIN among all methods. This implies that MetaHIN is robust

and can cope with the harder situation with very limited data.
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Figure 3: Performance improvement of MetaHIN.
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Figure 4: Impact of the size of support sets in UIC scenario.

5.3 Model Analysis (RQ2)
Next, we investigate the underlying mechanism of MetaHIN: the

effect of meta-learning on cold-start recommendation, as well as

the impacts of semantic contexts and co-adaptation meta-learner.

Effect of Meta-learning. We attempt to understand how meta-

learning facilitates the learning for cold-start recommendation.

Towards this end, we conduct an ablation study, and consider two

ablated variants of MetaHIN: (1) the base model (Sect. 4.3.1) without

meta-learning, namedMetaHIN-BM; (2) in order to warm up new

users or items, following [4] we further fine-tune the base model

with the union of support sets from the meta-testing data, which

derives another variant named MetaHIN-FT. Since similar trends

are observed in the three cold-start scenarios, here we only report

the performance in the hardest scenario UIC.

As presented in Fig. 5(a), from the base model to fine-tuning we

observe a performance gain on all datasets, although the gain can be

marginal on DBook and Yelp. The reason might be that example rat-

ings of new users and items are often scarce, which is inadequate for

the fine-tuning process. On the other hand, the full model MetaHIN

achieves significant improvements over fine-tuning, across all met-

rics and datasets. We attribute the improvement to the effective

learning of prior knowledge by the meta-learning framework.

Effect of Semantic Contexts and Co-adaptation. As the se-

mantic contexts and co-adaptation play pivotal roles in MetaHIN,

we compare to two more ablated variants, namelyMetaHIN-TA
and MetaHIN-ID. MetaHIN-TA only includes the task-wise adap-

tation also used in existing meta-learning approaches, without

semantic-wise adaptation. Thus, it aggregates all semantic contexts

without differentiating their facets. On the other hand, MetaHIN-ID

independently adopts task-wise adaptation in different semantic

spaces (i.e., based on different meta-paths), without a global prior

shared across semantic facets to encode the general knowledge of

how to learn from contexts on a HIN. Finally, we also include the

comparison to the baseline MeLU, which only utilize heterogeneous

Im
pr

ov
em

en
t (

%
)

0.0

5.0

10.0

15.0

20.0

Recommendation Scenario
EUEI NUEI EUNI NUNI

Im
pr

ov
em

en
t (

%
)

10.0

12.8

15.5

18.3

21.0

Recommendation Scenario

EUEI NUEI EUNI NUNI

Im
pr

ov
em

en
t (

%
)

10.0

12.5

15.0

17.5

20.0

Recommendation Scenario

EUEI NUEI EUNI NUNI

Im
pr

ov
em

en
t (

%
)

10.0

12.5

15.0

17.5

20.0

Recommendation Scenario
EUEI NUEI EUNI NUNI

Im
pr

ov
em

en
t (

%
)

6.0

9.5

13.0

16.5

20.0

(a) DBook
MAE RMSE nDCG@5

Existing Items for Existing Users Existing Items for New Users
New Items for Existing Users New Items for New Users

8.0

12.0

16.0

20.0

24.0

(b) MovieLens
MAE RMSE nDCG@5

0.0

6.0

12.0

18.0

24.0

(c) Yelp
MAE RMSE nDCG@5

M
A

E

0.60

0.68

0.75

0.83

0.90

(a) #support set on  
DBook

10 20 30 40 50 60 70 80 90
0.80

0.90

1.00

1.10

1.20

(b) #support set on 
MovieLens

10 20 30 40 50 60 70 80 90
0.70

0.83

0.95

1.08

1.20

(c) #support set on  
Yelp

10 20 30 40 50 60 70 80 90

MetaHIN NeuMF HERec

M
A

E

0.60

0.69

0.78

0.86

0.95

DBook MovieLens Yelp

MeLU MetaHIN-SA MetaHIN-GS MetaHIN

R
M

SE

0.70

0.80

0.90

1.00

1.10

DBook MovieLens Yelp

nD
C

G
@

5

0.80

0.83

0.85

0.88

0.90

DBook MovieLens Yelp

M
A

E

0.60

0.69

0.78

0.86

0.95

DBook MovieLens Yelp

MetaHIN-BM MetaHIN-FT MetaHIN

R
M

SE

0.70

0.80

0.90

1.00

1.10

DBook MovieLens Yelp

nD
C

G
@

5

0.80

0.83

0.86

0.88

0.91

DBook MovieLens Yelp

M
A

E

0.60

0.68

0.75

0.83

0.90

16 32 64 128 256

DBook MovieLens Yelp

R
M

SE

0.70

0.80

0.90

1.00

1.10

16 32 64 128 256

nD
C

G
@

5

0.80

0.83

0.85

0.88

0.90

16 32 64 128 256

1

(a) Effect of meta-learning.

Im
pr

ov
em

en
t (

%
)

6.0

9.5

13.0

16.5

20.0

(a) DBook
MAE RMSE nDCG@5

Existing Items for Existing Users Existing Items for New Users
New Items for Existing Users New Items for New Users

8.0

12.0

16.0

20.0

24.0

(b) MovieLens
MAE RMSE nDCG@5

0.0

6.0

12.0

18.0

24.0

(c) Yelp
MAE RMSE nDCG@5

0.80

0.93

1.05

1.18

1.30

(b) size of support set on 
MovieLens

5 10 20 30 40 50 60 70 80 90
0.70

0.85

1.00

1.15

1.30

(c) size of support set on  
Yelp

5 10 20 30 40 50 60 70 80 90

MetaHIN MeLU NeuMF HERec

M
A

E

0.60

0.69

0.78

0.86

0.95

DBook MovieLens Yelp

MeLU MetaHIN-TA MetaHIN-ID MetaHIN

R
M

SE

0.70

0.80

0.90

1.00

1.10

DBook MovieLens Yelp

nD
C

G
@

5

0.80

0.83

0.85

0.88

0.90

DBook MovieLens Yelp

M
A

E

0.60

0.69

0.78

0.86

0.95

DBook MovieLens Yelp

MetaHIN-BM MetaHIN-FT MetaHIN

R
M

SE

0.70

0.80

0.90

1.00

1.10

DBook MovieLens Yelp

nD
C

G
@

5

0.80

0.83

0.86

0.88

0.91

DBook MovieLens Yelp

M
A

E

0.60

0.68

0.75

0.83

0.90

16 32 64 128 256

DBook MovieLens Yelp

R
M

SE

0.70

0.80

0.90

1.00

1.10

16 32 64 128 256

nD
C

G
@

5

0.80

0.83

0.85

0.88

0.90

16 32 64 128 256

M
A

E

0.60

0.68

0.75

0.83

0.90

(a) size of support set on  
DBook

5 10 20 30 40 50 60 70 80 90

Im
pr

ov
em

en
t (

%
)

6.0

9.5

13.0

16.5

20.0

(a) DBook
MAE RMSE

Existing Items for Existing Users (Non-cold-start) Existing Items for New Users (UC)
New Items for Existing Users (IC) New Items for New Users (UIC)

8.0

12.0

16.0

20.0

24.0

(b) MovieLens
MAE RMSE

0.0

6.0

12.0

18.0

24.0

(c) Yelp
MAE RMSE

1

(b) Effect of semantic contexts and co-adaptation.

Figure 5: Analysis ofMetaHINusing various ablatedmodels.
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Figure 6: Analysis of parameters in MetaHIN.

information as user or item features. As in the previous experiment,

here we report the results in the UIC scenario in Fig. 5(b).

Overall, our MetaHIN is consistently superior to all variant mod-

els and MeLU. Compared with MeLU, MetaHIN-TA achieves better

performance on three datasets, which demonstrates that HIN-based

semantic contexts can alleviate the cold-start problem to some

extent. However, MetaHIN-TA still underperforms MetaHIN, illus-

trating the limitation in simply bringing semantic contexts without

fine-grained differentiation of the facets. The results also imply that

the semantic-wise adaptation is a crucial component of MetaHIN.

Similarly, the performance ofMetaHIN-ID is often better thanMeLU

but worse than MetaHIN. The reason might be that MetaHIN-ID

does not learn a global prior that connects different semantic facets.

In particular, it learns a prior for each facet independently, and thus

loses the general knowledge of learning with contexts on a HIN,

which would be shared across all semantic facets.

5.4 Parameter Analysis (RQ3)
Lastly, we investigate the impact of parameters on the recommen-

dation performance. As with previous analysis, we showcase the



UIC scenario since the observations are similar in other cold-start

scenarios. Specifically, we investigate how the number of semantic-

and task-wise adaptation steps affect the performance. Then, we

analyze the influence of the dimension of user representations.

Number of Co-adaptation Steps. Let s and t be the number

of semantic- and task-wise adaption steps, respectively. We plot

the performance of MetaHIN under combinations of 0 ≤ s ≤ 5

and 0 ≤ t ≤ 5 in Fig. 6(a), in terms of MAE. We observe that the

performance of MetaHIN is generally stable for different values

of s and t , except when they are zero (i.e., no adaptation at all). In

particular, our MetaHIN can adapt quickly with only one gradient

update in both adaptions (i.e., s = t = 1), which makes it possible

for efficient online recommendations.

Impact of Embedding Dimensions. We also explore how the

dimensions of user embeddingsd would affect the performance. The

results are summarized in Fig. 6(b). We observe that our MetaHIN

achieves optimal performance when the dimension is set to 32. Our

model is generally stable around the optimal setting, indicating that

MetaHIN is robust w.r.t. the embedding dimensions.

6 CONCLUSION
In this paper, we proposed a novel meta-learning approach called

MetaHIN for cold-start recommendation on HINs, which alleviates

the cold-start problem at both data and model levels. Specifically,

we designed a semantic-enhanced task constructor to explore rich

semantics on HINs in the meta-learning setting, and a co-adaptation

meta-learner with semantic- and task-wise adaptions to cope with

different semantic facets within each task. Extensive experiments

on three datasets demonstrated that MetaHIN significantly outper-

forms state-of-the-art baselines in various scenarios.
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A REPRODUCIBILITY SUPPLEMENT
We have omitted some details in the main paper and present them

here to enhance the reproducibility. We first give additional imple-

mentation notes and the pseudo code of our training procedure.

Then, we describe the datasets in more details including any pro-

cessing we have done, as well as implementation of the baselines.

Finally, we introduce the experimental environment and hyper-

parameters settings. The code and datasets will be also publicly

available after the review.

A.1 Additional Implementation Notes
A.1.1 Embedding Initialization. In the base model (Sect. 4.3.1), fol-

lowing [16], we initialize the representations of users and items

with the concatenation of their feature embeddings. In detail, given

a user u with m features, we represent each feature with a one-

hot (e.g., gender) or multi-hot vector (e.g., hobbies). Then the i-th
feature of the user is projected into a d-dimensional dense vector

pi ∈ Rd by the embedding lookup as following:

pi = Z⊤zi , (16)

where zi ∈ Rdi is the di -dimensional one-hot or multi-hot vector

for the i-th feature, and Z ∈ Rd×di is the corresponding feature

embedding matrix. Accounting for all features of the user, the initial

embeddings of user u is given as:

eu = p1 ⊕ p2 ⊕ · · · ⊕ pm , (17)

where eu ∈ RdU , and dU = md . Similarly, we can get the initial

embeddings for items.

A.1.2 Transformation Function. In task-wise adaptation (Sect. 4.3.2),
we apply a transformation function κ(·) to adapt ω to the semantic-

wise initial parameters ωp . The detailed form of κ(·) is:

κ(xp ⟨S ⟩u ) = sigmoid(Wκx
p ⟨S ⟩
u + bκ ), (18)

where {Wκ , bκ } are learnable parameters of the function κ(·).

A.2 Pseudocode and Complexity Analysis
Pseudocode. The pseudocode of the training procedure forMetaHIN

is detailed in Algorithm 1. The training of MetaHIN involves the

initialization of user and item embeddings, co-adaptations and rat-

ing prediction. At the beginning (Line 1), we randomly initialize all

learnable parameters (denoted as Θ) in our MetaHIN, including the

meta-learner parameters θ = {ϕ,ω} and other global parameters

(e.g., embedding lookup tables). Then, we construct the semantic-

enhanced tasks for meta-training, and each task includes a support

set and a query set (Line 2). In each training iteration, we sample a

batch of tasks, i.e., user tasks from the meta-training set T tr
(Line

4). For each task Tu ∈ T
tr
, we perform semantic- and task-wise

adaptations on the support set in each semantic space (Line 5-12).

Furthermore, we fuse the adaptations in all semantic spaces (Line

13). At last, we update all learnable parameters in MetaHIN (Line

15). The process stops when the model converges.

Complexity analysis. We nexr conduct a complexity analysis of

our training procedure, which involves the initialization of user and

item embeddings, co-adaptations and rating prediction. Thus, the

time cost isO(e · |T tr | · |P | ·d ·dI ), where e is the number of epochs,

|T tr | and |P | are the number of meta-training tasks and meta-paths.

d and dI are the dimension of user embeddings and item initial

embedding. As |P |, d and dI are usually small, the complexity of

MetaHIN is linear with the number of tasks, i.e., |T tr |.

Algorithm 1 Meta-training of MetaHIN

Require: a HIN G; a set of meta-path P; a set of meta-training

tasks T tr
; semantic and task-wise update steps: s and t ;

semantic-wise, task-wise and meta-learning rates: α , β and

η;
1: Randomly initialize meta-learner parameters θ = {ϕ,ω} and

other global parameters (e.g., embedding lookup tables)

2: Construct the semantic-enhanced tasks for meta-training T tr
,

each task Tu ∈ T
tr
consisting of a support Su and a query set

Qu , and Su = S
R
u ∪ S

P
u ,Qu = Q

R
u ∪ Q

P
u

3: while not done do
4: Sample a batch of tasks Tu ∈ T

tr

5: for all task Tu w.r.t. user u do
6: for all meta-path p ∈ P do
7: Compute xpu using S

p
u ⊂ S

P
u by Eq. (9)

8: Evaluate LTu (ω, x
p
u ,S

R
u )

9: Semantic-wise adaptation by Eq. (11) with s updates

10: Evaluate LTu (ω
p , xp ⟨S ⟩u ,SRu )

11: Task-wise adaptation by Eq. (13) with t updates
12: end for
13: Calculate ωu and xu with adaptation fusion as in Eq. (15)

14: end for
15: Update all learnable parameters Θ in MetaHIN as:

Θ← Θ − η∇Θ
∑
Tu∼p(T) LTu (ωu , xu ,Q

R
u )

16: end while

A.3 Data Processing
We construct a HIN with each dataset, as follows.

• DBook is awidely used book-rating dataset obtained fromDouban

[22], where users rate books from 1 to 5. The features of users

and items are {Location} and {Publish Year, Publisher}. We divide

books into existing and new items according to the publication

year, with a ratio of approximately 8:2. Since we have no time

information about users, we randomly selected eighty percent of

users as the existing users and the rests as the new users.

• MovieLens is a stable benchmark published byGroupLens, where

movies rated on a scale of 1 to 5 were released from 1919 to 2000.

To introduce movie contents, we collect additional information

from IMDB. Each user and item is associated with the feature

set {Age, Gender, ZipCode, Occupation} and {Rate, Year, Genre},
respectively. According to the released year, we divide movies

into existing items (released before 1998) and new items (released

from 1998 to 2000), with a ratio of about 8:2. To define the new

users in MovieLens dataset, we sort the first rating timestamp of

users, and the most recent 20% of users are regarded to be new

to MovieLens.

• Yelp is a widely used datasets for recommendation [31]. Wherein,

each user and business is associated with the features {Fans, Year
jointed Yelp, Avg. Rating} and {Stars, PostalCode}, respectively. The
rating of a business ranges from 1 to 5. We take users who joined



Yelp before May 1, 2014 as existing users and the rests as news

users. Similarly, we define the existing businesses and the new

businesses based on when they were first rated. The ratio of new

users (businesses) to existing users (businesses) is about 8:2.

A.4 Implementation of Baselines
We compare our proposed MetaHIN with three categories of meth-

ods: (1) Traditional methods, i.e., FM, NeuMF and GC-MC. (2)
HIN-basedmethods, i.e., mp2vec andHERec. (3) Cold-startmeth-
ods, i.e., DropoutNet, MeteEmb and MeLU.

• FM [20] is a feature-based baseline which is able to utilize var-

ious kinds of auxiliary information. In addition to the existing

contents, here we also incorporate heterogeneous information

of both datasets as additional input features.

• NeuMF [10] is a state-of-the-art neural network CF model which

consists of a generalized matrix factorization component and a

MLP component. Here we redefine the output unit as a linear

layer for rating prediction.

• GC-MC [1] adopts GCN [14] to generate the embeddings for

users and items and then predict the ratings of users to items.

• mp2vec [5] is a classic HIN embedding method, which samples

meta-path based random walks for learning node embeddings.

• HERec [22] is a HIN-based model for rating prediction, which

exploits heterogeneous information with matrix factorization.

• DropoutNet [29] is a neural network based model for cold-start

problem, which explicitly train neural networks through dropout.

• MeteEmb [19] is a meta-learning based methods for CTR predic-

tion, which generates initial embeddings for new ad IDs with ad

contents and attributes. We employ it to generate new user/item

embedding and then predict ratings.

• MeLU [16] applies MAML [9] to address cold-star problem,

where only user-item interactions and features are considered.

A.5 Experiment Environment
All experiments are conducted on a Linux server with one GPU

(GeForce RTX) and CPU (Intel Xeon W-2133), and its operating

system is Ubuntu 16.04.1. We implement the proposed MetaHIN

with deep learning library PyTorch. The Python and PyTorch ver-

sions are 3.6.9 and 1.3.1, respectively. The code and datasets will be

publicly available after the review.

A.6 Parameter Settings
We adopt Adaptive Moment Estimation (Adam) to optimize our

MetaHIN. For all dataset, we use a batch size of 32 and set the

meta-learning rate to 0.0005 (i.e., η = 0.0005). We perform one step

gradient descent update in both semantic-wise and task-wise adap-

tations. We set both the semantic-wise and task-wise learning rate

to 0.005 (i.e., α = β = 0.005) for DBook and MovieLens datasets,

while α = β = 0.001 for Yelp dataset. The maximum number of

epochs are set to 50,100 and 20 for DBook, MovieLens and Yelp, re-

spectively. Note that we also study the impact of hyper-parameters

in MetaHIN in Sect. 5.4.

For baselines, we optimize their parameters empirically under

the guidance of literature. Specifically, for FM, we set the rank of

the factorization used for the second order interactions as 8 and

utilize L2 regularization with coefficients 0.1. For NeuMF, we set the

layers to (64, 32, 16, 8) and learning rate to 0.001. For GC-MC, the

number of hidden units in the first and second layer are set to 500

and 75, respectively. The dropout fraction is set to 0.7. For mp2vec,

we set the length of random walk, the number of walks and the size

of windows to 40, 10 and 3, respectively. The tuning coefficients in

HERec (i.e., α and β) are set to 1.0, and the random walk settings

are same as in mp2vec. As suggested in the original paper, the

learning rate in DropoutNet is set to 0.9 and the dropout rate is set

to 0.5. We leverage the architectures of the embedding generator

suggested by the authors in MetaEmb, and set the coefficient α to

0.1. For MeLU, we utilize the suggested two layers for decision-

making layers with 64 nodes each, and set the local update step as 1.

Other baseline parameters either adopt the original optimal settings

or are optimized by the validation set. For all methods (including

MetaHIN), the embedding dimensions is fixed to 32.
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