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S Solution: Given a contemporaneous pair (T,S), estimate conditional

Associations: probabilities to rank all candidate items v;:

* Correlative associations among items of a basket Y; = P(w|T,S) = F(v;, X, X); 0)

¢ Sequential associations across baskets of a sequence

where F is a real-valued function, e.g., softmax o
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Datasets: Alibaba — “click” as support, “purchase” as target; and MovielLens - “select a movie to rate” as support, “highly rate a movie” as target

Methodology: For a given testing pair < S, T >, hide last target basket B and generate the top-K predictions given < S5, T\B >

Metric: Mean reciprocal rank (MRR) measures the overall ranking performance. Higher is better. POP DRM_s ~ ®mDRM_T  mBSEQ_S
BSEQ T ®CBS-SN mCBS-CFN mCBS-DFN
0.020 0.09
_ L=8
0.014 =96 L= 9 0.08 =8 _ L=3
0.015 ¥ 0.08 & — L 1=64 =96 .
a4 x 0.07 o > L=64
& 0,010 PRI g 0-010 05 Z
= : = 0.06 S 0.04
0.005 p 0.05 o~ o--- & === 0.006 | =3 0.02 =06
: iel | =16
0.000 Alibaba 0.04 & Movielens 9007 000 =1
0 16 32 48 64 80 96 0 16 32 48 64 80 96 Allbaba Movielens

b) Best Performance Comparison between the CBS models and baselines
(_ T~ Target only; S~ Support only; H =32)

Conclusion: Experiments on the two datasets show that the modeling of Contemporaneous Basket Sequences with Twin networks contributes

L a) Single basket sequence vs. CBS (H=32) L

statistically significant improvements as compared to single basket-sequence models in terms of top-K recommendations.



