Modeling Contemporaneous Basket Sequences with Twin Networks for Next-Item Recommendation

Duc-Trong Le, Hady W. Lauw, Yuan Fang

Problem

- **Target Sequence (T)**
 - Session t0
 - Session t1
 - Session t2

- **Support Sequence (S)**
 - Session t0
 - Session t1

- **Next-item?**
 - Target: Modeling **correlative & sequential** associations in CBS concurrently to predict the next “target” item.
 - Solution: Given a contemporaneous pair (T, S), estimate conditional probabilities to rank all candidate items \(v_t \):
 \[
 Y_t = P(v_t | T, S) = F(v_t, X^{(T)}, X^{(S)}; \Theta)
 \]
 where \(F \) is a real-valued function, e.g., softmax \(\sigma \)

Experiments

Datasets:
- Alibaba – “click” as support, “purchase” as target; and MovieLens - “select a movie to rate” as support, “highly rate a movie” as target

Methodology: For a given testing pair \(S, T \), hide last target basket \(B \) and generate the top-K recommendations given \(S, T \setminus B \).

Metric: Mean reciprocal rank (MRR) measures the overall ranking performance. Higher is better.

Conclusion: Experiments on the two datasets show that the modeling of **Contemporaneous Basket Sequences with Twin networks** contributes statistically significant improvements as compared to **single basket-sequence models** in terms of top-K recommendations.