REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION
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ABSTRACT

Object detection has been a key task in computer vision with
deep convolutional neural networks being a significant per-
former. We propose a method named Region Average Pool-
ing that leverages object co-occurrence to improve object de-
tection performance. Given regions of interest in an image,
our method augments object detection networks with pooled
contextual features from other regions of interest in the scene.
We implement our scheme and evaluate it on the Pascal Visual
Object Classes (VOC) 2007 and Microsoft Common Objects
in Context (MS COCO) datasets. When used as part of the
Faster R-CNN object detection framework with VGG-16, we
show an increase in mAP from 24.2% to 25.5% over baseline
Faster R-CNN and Global Average Pooling when testing on
MS COCO.

Index Terms— Object Detection, CNN, Pooling, Faster
R-CNN, Object Co-occurrence, Context

1. INTRODUCTION

One of the key tasks in computer vision is object detection,
which refers to localisation and classification of objects in
a scene. While this task has been researched in the past
[1], modern advances in deep convolutional neural networks
(CNN) for image classification [2, 3, 4, 5] have brought sig-
nificant performance gains to object detection over previous
approaches[6, 7, 8, 9].

Faster R-CNN [8, 9] has emerged as a baseline model for
CNN based object detection, combining both region proposal
and region classification into a single network. However, a
limitation of this framework is that each region proposal is
classified individually without taking the rest of the image
into account.

Various works have attempted to address this by adding
contextual information from the rest of the image [10, 11].
These contextual features are known to benefit visual tasks,
particularly when local features are insufficient such as in ob-
ject recognition with small or obstructed objects [12, 13, 14].

1.1. Related Work

Global Average Pooling [10, 15, 11] has been used to add con-
text to object detection by average pooling the entire source

feature map then unpooling and concatenating it onto each lo-
calised object’s feature map. This combined feature contains
information about the object and its surrounding context, al-
lowing subsequent layers of the network to leverage context
from the rest of the scene.

Recent approaches utilise a spatial recurrent neural net-
work to pass information laterally across the entire image
feature map. Features pooled from this context map provide
global context with respect to each pooled spatial location.
This provides an increase in performance over global average
pooling at the cost of computational power and time [10].

Li et al. [11] argue that not all information in an image
is useful for context, and approaches such as Global Average
Pooling provide low quality context features. Their work in-
troduces using an attention-based recurrent neural network to
find higher quality context features.

We hypothesise that using object co-occurrence for con-
text will provide similar higher quality context when com-
pared to context from the scene as a whole. Our approach
explores this by introducing Region Average Pooling, which
augments local object feature maps with a context feature
pooled from all region of interests in an image. This method
uses only important regions of interest for context, reducing
background noise and providing superior context features.

1.2. Contribution

We introduce Region Average Pooling as a method of adding
contextual information to object detection tasks. Through
this method, object feature maps are augmented with pooled
features from all regions of interest in an image. These
contextual features allow deep CNNs to leverage object co-
occurrence for context in order to improve object detection
performance.

We implement our method and evaluate it on the Pas-
cal VOC 2007 [16, 17] and Microsoft COCO [18] datasets.
We compare our method against Global Average Pooling as a
method of adding contextual information.

When used as part of the Faster R-CNN object detection
framework with VGG-16 [9], we show an increase in mean
average precision (mAP) from 24.2% to 25.5% over baseline
Faster R-CNN and Global Average Pooling when testing on
MS COCO test with minimal additional computational cost.
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Fig. 1. Structure of Region Average Pooling (RAP) built on Faster R-CNN and VGG-16. In RAP, we compute the pooled
average of all region of interests (ROI) before concatenating the result to each ROI. This concatenated feature map provides

contexual information to subsequent layers of the network.

2. TECHNICAL APPROACH

We build our work on the framework provided by Faster R-
CNN and VGG-16 [8, 9]. This framework provides region
proposal through a Region Proposal Network (RPN), which is
used to pool region of interest (ROI) feature maps from the fi-
nal convolutional layer of VGG-16 (conv5_3). In the original
framework, these ROI features are passed through the fully
connected layers (fc6, fc7) before splitting into two separate
fully connected layers for object classification and bounding
box regression.

To add context to this framework, we compute a context
feature and concatenate it to each ROI feature map. This com-
bined feature goes through 1x1 convolution for dimensional-
ity reduction before the fully connected layers. This provides
the subsequent layers of the network with information about
both the region of interest as well as additional contextual in-
formation.

To compute this context feature, we introduce Region
Average Pooling and compare it with a similar scheme for
adding context, Global Average Pooling.

2.1. Global Average Pooling

To compute a context feature using Global Average Pooling,
the final convolutional feature map from VGG-16 (conv5_3)
is average pooled to produce a single vector. This global vec-
tor is then unpooled by tiling the feature to match the size of
the ROI feature maps.

This results in a context feature that contains information
about the entire scene, which the following layers can use to
augment individual object detection.

2.2. Region Average Pooling

In our Region Average Pooling scheme, each ROI feature map
pooled from conv5_3 first undergoes average pooling to pro-
duce multiple vectors. These vectors are then averaged into a
single vector and then unpooled by tiling into a context fea-
ture similar to that in Global Average Pooling.

The resulting context feature contains information about
all region of interests in the scene which can be used to infer
context via object co-occurrence. We believe that this will
provide higher quality context features than that gained from
looking at the global scene as a whole.

The structure of our scheme is shown in Figure 1.

3. EXPERIMENTS

We perform experiments using Faster R-CNN with VGG-16
as the base framework, and compare two methods of adding
contextual features, Global Average Pooling and Region Av-
erage Pooling as described in Section 2. We build these mod-
els on the publicly available Python Caffe implementation of
Faster R-CNN.

Both models are trained and evaluated on the PASCAL
VOC and MS COCO datasets. For training on PASCAL
VOC, we combine training and validation (trainval) sets of
PASCAL VOC 2007 as well as PASCAL VOC 2012 [17, 19].
The training and validation sets of MS COCO [18] are sim-
ilarly combined, but with a small subset of 5000 images left
out for validation.

For quicker training, all models are initialised with
weights from pre-trained Faster R-CNN models. For train-
ing on PASCAL VOC, the models’ weights are initialised
from a Faster R-CNN model pre-trained on PASCAL VOC
2007. For MS COCO, the models are similarly initialised
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FRCNN | 73.2

76.5 79.0 70.9 65.5 52.1 83.1 84.7 864 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

GAP | 74.8

77.6 79.5 7477 654 579 83.6 87.2 87.5 55.1 81.6 66.1 834 855 78.5 78.7 47.0 76.5 70.6 84.8 74.2

RAP | 74.8

77.8 79.1 739 639 59.6 84.3 87.5 87.2 55.1 83.8 67.6 84.8 86.1 77.4 78.8 49.0 752 69.1 822 74.4

Table 1. Comparing performance of our proposed Region Average Pooling (RAP) with Global Average Pooling (GAP) and baseline Faster

R-CNN (FRCNN), on PASCAL VOC 2007 test.

mAP, IoU mAP, Area mAR, Max Dets mAR, Area
Method | 0.50:0.95 0.50 0.75 Small Medium Large 1 10 100 Small Medium Large
MS COCO 2015 test-dev
FRCNN 24.2 453 23.5 7.7 26.4 37.1 23.8 34.0 34.6 12.0 38.5 54.4
GAP 24.2 449 23.9 7.5 26.4 36.7 24.0 35.0 35.7 12.7 40.5 54.0
RAP 254 46.6 25.2 8.1 28.0 38.6 24.4 353 35.9 12.6 40.4 55.6
MS COCO 2015 test-std
FRCNN 24.2 45.3 234 7.2 26.4 36.9 23.8 34.1 34.7 11.5 38.9 54.4
RAP 25.5 46.8 25.1 7.7 28.1 38.4 24.5 35.5 36.1 12.3 40.9 55.6

Table 2. Comparing performance of our proposed Region Average Pooling (RAP) with Global Average Pooling (GAP) and baseline Faster
R-CNN (FRCNN), on MS COCO 2015 test-dev and MS COCO 2015 test-std. We provide mean average precision (mAP) and mean
average recall (mAR) over different intersection over union (IoU), area, and maximum number of detections.

using weights from a Faster R-CNN model pre-trained on
MS COCO.

We train the models on PASCAL VOC using a learning
rate of 0.001 for 50k iterations, 0.0001 for 100k iterations,
and 0.00001 for a final 50k iterations. For MS COCO, we use
a longer training schedule to allow the models to fully con-
verge. We train at a learning rate of 0.001 for 250k iterations,
0.0001 for 300k iterations, and 0.00001 for a final 250k iter-
ations. We set momentum to 0.9 and weight decay to 0.0005
for training on both datasets. Both models were trained end-
to-end.

We evaluate the performance of both models on PASCAL
VOC 2007 test, as well as MS COCO 2015 test-dev and test-
std, and show results in Table 1 and Table 2.

3.1. Results

When testing on PASCAL VOC 2007 test, we find that while
both Global Average Pooling and Region Average Pooling in-
crease mean average precision (mAP) from 73.2% to 74.8%
over baseline Faster R-CNN, neither method outperforms the
other.

On MS COCO 2015 test-dev, while Global Average Pool-
ing gives an increase in mean average recall (mAR), from
34.6% to 35.7% over baseline at 100 maximum detections,
no increases in mean average precision (mAP) were observed.

Region Average Pooling on the other hand shows in-
creases in both mAP as well as mAR, showing increases in
mAP (IoU 0.5:0.95) from 24.2% to 25.4% and mAR (100
max detections) from 34.6% to 35.9% when compared to
baseline Faster R-CNN.

Testing on MS COCO 2015 test-std shows a similar in-
crease for Region Average Pooling to 25.5% for mAP (IoU
0.5:0.95) and 36.1% for mAR (100 max dets).

At test time, Region Average Pooling takes 0.150 sec-
onds per image when compared to baseline Faster R-CNN
at 0.145 seconds per image on an Nvidia Titan X GPU. This
shows that Region Average Pooling displays increased perfor-
mance while introducing minimal additional computational
cost. This includes proposal generation, object classification,
and bounding box regression.

3.2. Discussion

From our results, we observe that while Region Average
Pooling and Global Average Pooling show improvements
over baseline on both datasets, Region Average Pooling per-
forms better than Global Average Pooling only when testing
on MS COCO.

We believe that this difference in performance is due to
the number of categories and object instances per image in
each dataset. As stated in [18], MS COCO averages 3.5 cat-
egories and 7.7 object instances per image while PASCAL
VOC averages less than 2 categores and less than 3 object in-
stances per image. Furthermore, while only 20% of images
in MS COCO have a single category per image, up to 70%
of images in PASCAL VOC have only a single category per
image. An example is shown in Figure 2.

As Region Average Pooling leverages context through ob-
ject co-occurrence, we thus argue that it performs better on
MS COCO when compared to PASCAL VOC due to the in-
creased average number of categories and object instances,
allowing more co-occurrence relationships to be learned by



the network.

One possible improvement to our current approach is to
selectively pool ROIs that contain higher quality features. To
implement this, the object scores produced by the Region Pro-
posal Network (RPN) of Faster R-CNN may be used as an
indicator of feature quality for each region. While this may
provide improvements by using only high quality region fea-
tures for context, this approach is beyond the scope of this
paper and can be explored in further work.

4. CONCLUSION

We introduce Region Average Pooling as a method of adding
contextual information to deep CNN based object detection
networks such as Faster R-CNN. By pooling region of in-
terests in a scene into a high quality context feature, we are
able to augment local object feature maps and improve ob-
ject detection performance by allowing the network to lever-
age context through object co-occurrence. We compare our
method with Global Average Pooling and baseline Faster R-
CNN on the Pascal Visual Object Classes (VOC) 2007 [16,
17] and Microsoft Common Objects in Context (MS COCO)
[18] datasets, and find that Region Average Pooling outper-
forms Global Average Pooling as a method of adding contex-
tual information to Faster R-CNN on the MS COCO dataset.
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Fig. 2. Similar scenes from both PASCAL VOC (Top) and
MS COCO (Bottom) with groundtruths shown. MS COCO
averages a higher number of categories and object instances
per image, allowing object co-occurrence to be better lever-
aged.

Fig. 3. Examples comparing results from Global Average
Pooling (Top) and Region Average Pooling (Bottom) when
testing on MS COCO. Groundtruths are shown in red and top
3 detections are shown in blue.
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