

Modeling Sequential Preferences with Dynamic User and Context Factors

Duc-Trong Le, Yuan Fang, Hady W. Lauw

ECML-PKDD 2016 Riva Del Garda, Italy

Outline

Motivating examples and Models

- Modeling sequential preferences (HMM)
- Modeling Dynamic User-Bias Emissions (SEQ-E)
- Modeling Dynamic Context-Biased Transitions (SEQ-T)
- Joint Model (SEQ*)

Experiments

- Real-life Datasets: Twitter & Yes.com
- Synthetic Dataset

The notion of Sequence – Song playlists

Modeling Sequential Preferences

Hidden Markov Model (HMM)

HMM-Formulation: $\theta = (\pi, A, B)$

- π is the initial state distribution: $\pi_x \triangleq P(X_1 = x)$;
- A is the transition matrix: $A_{xu} \triangleq P(X_t = u | X_{t-1} = x)$;
- B is the emission matrix: $B_{xy} = P(Y_t = y \mid X_t = x)$;

$$\forall x, u \in \mathcal{X}; y \in \mathcal{Y}; t \in \{1, 2, \dots\}$$

Modeling Sequential Preferences

HMM-Example: A HMM model with 2 latent states, 4 items

•
$$\pi = [\pi_0, \pi_1] = [0.8, 0.2]$$
 $\pi_0 = P(X_1 = 0) = 0.8$

•
$$A = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} = \begin{bmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{bmatrix}$$

 $A_{00} = P(X_t = 0 \mid X_{t-1} = 0) = 0.7$

•
$$B = \begin{bmatrix} B_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0.3 & 0.5 & 0.1 & 0.1 \end{bmatrix}$$

 $B_{00} = P(Y_t = \text{"Dream on"} \mid X_t = 0) = 0.6$
 $B_{10} = P(Y_t = \text{"Dream on"} \mid X_t = 1) = 0.3$

School of Information Systems

The notion of Group

<u>Hypotheses:</u> There exists **different groups** of users

- Users in the same group share the same emission probabilities
- Users across groups may have different emission probabilities.

Modeling Dynamic User-Bias Emissions

Formulation: $\theta = (\pi, \sigma, A, B)$ with a set of groups \mathcal{G}

- σ is the **group distribution**: $\sigma_g \triangleq P(G = g)$
- B is the **new emission tensor**: $B_{gxy} \triangleq P(Y_t = y \mid X_t = x, \mathbf{G} = \mathbf{g})$ $\forall x, u \in \mathcal{X}; y \in \mathcal{Y}; g \in \mathcal{G}; t \in \{1, 2,\}$
- Example: $B_{000} = P(Y_t = \text{"Dream on"} \mid X_t = 0, \textbf{G} = \textbf{0}) = 0.8$ $B_{100} = P(Y_t = \text{"Dream on"} \mid X_t = 0, \textbf{G} = \textbf{1}) = 0.3$

The notion of Context Features, Factors

Hypotheses: There exists **context features** and **factors**

- Latent context factors manifest through context features
- Transitions are affected by latent context factors.

SMU SINGAPORE MANAGEMENT UNIVERSITY

Modeling Dynamic Context-Biased Transitions

Hypothesis:

Transitions are affected by latent context factors

Formulation: $\theta = (\pi, \rho, A, B, C)$ with a context factors set \mathcal{R} ;

- ρ is the distribution of the **latent context factor**: $\rho_r \triangleq P(R_t = r)$;
- A is the **new transition tensor**: $A_{rxu} \triangleq P(X_t = u | X_{t-1} = x, R_{t-1} = r);$ $\forall x, u \in \mathcal{X}; r \in \{1, ..., |\mathcal{R}|\};$
- Examples: $A_{100} = P(X_t = 0 | X_{t-1} = 0, \mathbf{R_{t-1}} = \mathbf{1}) = 0.9$

$$A_{000} = P(X_t = 0 | X_{t-1} = 0, R_{t-1} = 0) = 0.4$$

Information Systems

Modeling Dynamic Context-Biased Transitions

Hypothesis:

Latent context factors manifest through context features

Formulation: $\theta = (\pi, \rho, A, B, C)$ with a context features set $F = \{F^1, F^2, ...\}$, each F^i takes a values set \mathcal{F}^i

- C is the feature probability matrix: $C_{rif} \triangleq P(F_t^i = f \mid R_t = r);$ $r \in \{1, ..., |\mathcal{R}|\}; i \in \{1, ..., |F|\}; f \in \mathcal{F}^i; t \in \{1, 2, ...\}$
- Examples: $C_{101} = P((\mathbf{F_t^0 = 1} \mid R_t = 1) = 0.99)$ $C_{100} = P((\mathbf{F_t^0 = 0} \mid R_t = 1) = 0.01)$

Joint Model

Main idea: Jointly capture user and context factors in a single model

Parameters: The six-tuple $\theta = (\pi, \sigma, \rho, A, B, C)$ as above

<u>Prediction</u>: $y^* = \operatorname{argmax}_y P(Y_{T+1} = y | Y_1, ..., Y_T, F_1, ..., F_T; \theta^*)$

Outline

Motivating examples and Models

- Modeling sequential preferences (HMM)
- Modeling Dynamic User-Bias Emissions (SEQ-E)
- Modeling Dynamic Context-Biased Transitions (SEQ-T)
- Joint Model (SEQ*)

Experiments

- Real-life Datasets: Twitter & Yes.com
- Synthetic Dataset

Experimental Setup – Real-life Datasets

• Research Question: Do the latent user and context factors result in significant improvements over HMM?

Datasets:

Dataset	#Observation	#Sequence	Average Length	
Song playlists (Yes.com)	3168	250k	7	
Hashtag Sequences (Twitter)	2121	114k	19	

Features:

- Categories of tags (Yes.com)
- Tweet information (Twitter): #Retweet, Created Time, etc.

Experimental Setup – Real-life Datasets

- Task: Last item prediction
 - For each testing sequence $s = \{Y_1, Y_2, ..., Y_{T-1}, Y_T\}$ $T \ge 2$
 - Save Y_T as ground-truth target. Predict the last item given the previous items $P(Y_{\text{candidate}} | Y_1, Y_2, ..., Y_{T-1})$

Evaluation Metrics

• $Recall@K = \frac{\text{# sequences with ground truth in top } K}{\text{# sequences in the testing set}}$

Example:

- Given a sequence $s = \{i_{10}, i_2, i_5, i_8\}$; $P(i_{candidate}|i_{10}, i_2, i_5) \Rightarrow rank_{i_8} = 9$
- $S_{\text{test}} = \{s_1, s_2, s_3\}$ with respective ranks of actual items are 3, 6, 11. Recall@5 = 1/3; Recall@10 = 2/3
- Mean Reciprocal Rank (MRR)

Result – Twitter - Recall@1%

#Group $|\mathcal{G}| = 2$, #Context Factor Level $|\mathcal{R}| = 2$, #Feature $|\mathcal{F}| = 7$

Result - Yes.com - Recall@1%

#Group $|\mathcal{G}| = 2$, #Context Factor Level $|\mathcal{R}| = 2$, #Feature $|\mathcal{F}| = 11$

Experimental Setup – Synthetic Dataset

Research Questions:

- Can the implementation recover parameters from the synthetic dataset?
- Could the effect of latent user and context factors be simulated by increasing the number of HMM's states?

Generative process:

Dataset	#Observation	#Sequence	Average Length	
Synthetic	4	10k	10	

Task: Last item prediction

Evaluation metrics: Recall@1, MRR

Result - Synthetic Dataset - Recall@1

#Group $|\mathcal{G}| = 2$, #Context Factor Level $|\mathcal{R}| = 2$, #Feature $|\mathcal{F}| = 4$

Conclusion

- Introduce and model dynamic user and context factors to capture sequential preferences.
- The proposed model contributes statistically significant improvement as compared to the baseline HMM in term of top-K recommendations.

Thank you! Q&A

Any further questions, please contact us: hadywlauw@smu.edu.sg yfang@i2r.a-star.edu.sg ductrong.le.2014@smu.edu.sg

Backup Slides

Result – Yes.com – Tuning Parameters

Synthetic Dataset – Generative Process

#Group $ \mathcal{G} $	2	#Context Factor Level $ \mathcal{R} $	2
#States $ \mathcal{X} $	2	#Feature <i>F</i>	4
#Observation $ \mathcal{Y} $	4	#Feature values $ \mathcal{F} $	2

- Initial Probability: $\pi = \{0.8, 0.2\}$
- Latent Context Factor Distribution: $\rho = \{0.3, 0.7\}$
- Group Distribution: $\sigma = \{0.9, 0.1\}$
- Transition Tensor A:
 - The first context factor favors self-transition to the same state
 - The second context factor encourages the state switching.

$$A = [A_0, A_1]; A_1 = \begin{bmatrix} 0.01 & 0.99 \\ 0.70 & 0.30 \end{bmatrix}; A_0 = \begin{bmatrix} 0.99 & 0.01 \\ 0.30 & 0.70 \end{bmatrix}$$

Result – Twitter – Recall@K & MRR

Table 3. Performance of comparative methods on Twitter.com for Recall@K

		FREQ	HMM	SEQ-T	SEQ-E	SEQ*	Imp.
	Recall@1%	8.4	16.9	17.1^{\dagger}	20.6^{\S}	$21.0^{\dagger\S}$	+4.1
5 States	Recall@50	16.1	28.3	28.6^{\dagger}	33.2^{\S}	$33.7^{\dagger\S}$	+5.4
	Recall@100	25.5	40.6	40.9^{\dagger}	46.0^{\S}	$46.5^{\dagger\S}$	+5.9
	Recall@1%	8.4	21.8	22.0^{\dagger}	26.5^{\S}	$26.9^{\dagger\S}$	
10 States	Recall@50	16.1	34.2	34.4^{\dagger}	39.4^{\S}	$39.8^{\dagger\S}$	+5.7
	Recall@100	25.5	47.2	47.4^{\dagger}	52.0^{\S}	52.4^{\S}	+5.2
CONTROL (1997)	Recall@1%	8.4	25.2	25.3^{\dagger}	29.98	$30.0^{\dagger\S}$	+4.8
	Recall@50	16.1	38.1	38.2^{\dagger}	43.1^{\S}	$43.3^{\dagger\S}$	+5.1
	Recall@100	25.5	51.2	51.3^{\dagger}	55.2^{\S}	55.3 ^{†§}	+4.1

Table 4. Performance of comparative methods on Twitter.com for MRR

					SEQ*	
5 States	0.019	0.045	0.046^{\dagger}	0.062^{\S}	$0.063^{\dagger\S}$	+0.0183
10 States	0.019	0.063	0.064	0.084^{\S}	$0.086^{\dagger\S}$	+0.0227
15 States	0.019	0.076	0.078^{\dagger}	0.100^{\S}	$0.101^{\dagger\S}$	+0.0246

SINGAPORE MANAGEMENT UNIVERSITY

Result – Yes.com – Recall@K & MRR

Table 1. Performance of comparative methods on Yes.com for Recall@K

		FREQ	HMM	SEQ-T	SEQ-E	SEQ*	Imp.
	Recall@1%	6.8	13.8	18.4^{\dagger}	22.0 [§]	$24.1^{\dagger\S}$	+10.3
5 States	Recall@50	9.6	19.2	25.1^{\dagger}	29.5^{\S}	32.1†§	+13.0
	Recall@100	16.2	29.3	37.0^{\dagger}	42.6^{\S}	46.1†§	+16.8
	Recall@1%	6.8	22.3	23.2^{\dagger}	27.8§	$28.6^{\dagger\S}$	+6.3
10 States	Recall@50	9.6	30.0	31.1^{\dagger}	36.9^{\S}	38.1†§	+8.1
	Recall@100	16.2	43.4	44.9^{\dagger}	52.1^{\S}	53.5 ^{†§}	+10.2
	Recall@1%	6.8	26.1	26.5^{\dagger}	30.18	$30.6^{\dagger\S}$	+4.5
15 States	Recall@50	9.6	34.7	35.5^{\dagger}	39.4^{\S}	$40.2^{\dagger\S}$	+5.5
	Recall@100	16.2	49.3	50.8^{\dagger}	55.1^{\S}	56.3 ^{†§}	+7.0
10							

Table 2. Performance of comparative methods on Yes.com for MRR

	FREQ	HMM	SEQ-T	SEQ-E	SEQ*	Imp.
5 States	0.014	0.028	0.037^{\dagger}	0.044^{\S}	$0.049^{\dagger \S}$	+0.021
10 States	0.014	0.045	0.047^{\dagger}	0.057^{\S}	$0.059^{\dagger \S}$	+0.014
15 States	0.014	0.053	0.054^\dagger	0.062^{\S}	0.063^{\S}	+0.009

Result - Synthetic Dataset - MRR

#Group $|\mathcal{G}| = 2$, #Context Factor Level $|\mathcal{R}| = 2$, #Feature $|\mathcal{F}| = 4$

Synthetic Dataset – Generative Process

- Emission Tensor B:
 - Each pair of (state, group) favors one of the four items

$$B = [B_0, B_1]; B_0 = \begin{bmatrix} 0.991 & 0.003 \\ 0.003 & 0.003 \\ 0.003 & 0.991 \\ 0.003 & 0.003 \end{bmatrix}; B_1 = \begin{bmatrix} 0.003 & 0.003 \\ 0.991 & 0.003 \\ 0.003 & 0.003 \\ 0.003 & 0.991 \end{bmatrix}$$

- Feature matrix C:
 - Each context factor level is associated with 2 of the 4 features.

$$C = [C_0, C_1]; C_0 = \begin{bmatrix} 0.10 & 0.90 \\ 0.20 & 0.80 \\ 0.90 & 0.10 \\ 0.90 & 0.10 \end{bmatrix}; C_1 = \begin{bmatrix} 0.90 & 0.10 \\ 0.90 & 0.10 \\ 0.10 & 0.90 \\ 0.30 & 0.70 \end{bmatrix}$$

