
TPR: Text-aware Preference Ranking
for Recommender Systems

Yu-Neng Chuang
∗

National Chengchi University

107753011@nccu.edu.tw

Chih-Ming Chen
∗†

National Chengchi University

104761501@nccu.edu.tw

Chuan-Ju Wang

Academia Sinica

cjwang@citi.sinica.edu.tw

Ming-Feng Tsai

National Chengchi University

mftsai@nccu.edu.tw

Yuan Fang

Singapore Management University

yfang@smu.edu.sg

Ee-Peng Lim

Singapore Management University

eplim@smu.edu.sg

ABSTRACT
Textual data is common and informative auxiliary information for

recommender systems. Most prior art utilizes text for rating predic-

tion, but rare work connects it to top-𝑁 recommendation. Moreover,

although advanced recommendation models capable of incorporat-

ing auxiliary information have been developed, none of these are

specifically designed to model textual information, yielding a lim-

ited usage scenario for typical user-to-item recommendation. In this

work, we present a framework of text-aware preference ranking

(TPR) for top-𝑁 recommendation, in which we comprehensively

model the joint association of user-item interaction and relations

between items and associated text. Using the TPR framework, we

construct a joint likelihood function that explicitly describes two

ranking structures: 1) item preference ranking (IPR) and 2) word

relatedness ranking (WRR), where the former captures the item

preference of each user and the latter captures the word relatedness

of each item. As these two explicit structures are by nature mutually

dependent, we propose TPR-OPT, a simple yet effective learning

criterion that additionally includes implicit structures, such as re-

latedness between items and relatedness between words for each

user for model optimization. Such a design not only successfully

describes the joint association among users, words, and text com-

prehensively but also naturally yields powerful representations

that are suitable for a range of recommendation tasks, including

user-to-item, item-to-item, and user-to-word recommendation, as

well as item-to-word reconstruction. In this paper, extensive exper-

iments have been conducted on eight recommendation datasets,

the results of which demonstrate that by including textual informa-

tion from item descriptions, the proposed TPR model consistently

outperforms state-of-the-art baselines on various recommendation

tasks.

∗
These authors contributed equally to this work.

†
Social Networks and Human-Centered Computing, Taiwan International Graduate

Program, Institute of Information Science, Academia Sinica, Taiwan.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3411969

CCS CONCEPTS
• Information systems→ Collaborative filtering; • Computing
methodologies→ Learning latent representations.

KEYWORDS
recommender systems; textual information; preference ranking

ACM Reference Format:
Yu-Neng Chuang, Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, Yuan

Fang, and Ee-Peng Lim. 2020. TPR: Text-aware Preference Ranking for

Recommender Systems. In Proceedings of the 29th ACM International Con-
ference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3340531.3411969

1 INTRODUCTION
Recommender systems are ubiquitous, as almost every service that

provides content to users is now armed with a recommender sys-

tem. In general, as user-item interactions such as ratings, playing

times, likes, sharing, and tags are generally available in real-world

recommender systems, many systems have leveraged collaborative

filtering (CF) for recommendation [9]. Despite the effectiveness and

prevalence of CF, most pure CF methods (i.e., those that leverage

only user-item interaction for modeling) do not incorporate auxil-

iary information such as item description and user profiles, thereby

yielding poor performance when user-item interactions are sparse

as well as under cold-start situations.

To leverage such auxiliary information to boost performance,

modern recommendation algorithms have expanded their ability

to integrate auxiliary context information using CF [3, 19, 22, 26].

A natural paradigm is to transform the auxiliary information into

a generic feature vector, along with user and item IDs, using this

as the input to train a supervised model for score prediction. Such

a paradigm for recommender systems has been widely used in

industry [6, 21]; representative algorithms include factorization ma-

chines (FM) [19], NFM (neural FM) [7], andWide &Deep [5]. On the

other hand, as graphs are an extremely flexible and powerful way

to represent data, another paradigm is to construct a graph struc-

ture that incorporates both the auxiliary information and user-item

interactions, based on which node and/or edge (or relation) em-

beddings are learned [1, 3, 16, 22, 25–27]; for this type of approach,

recent recommendation models such as CKE [26] exploit knowl-

edge base for better recommendation results; KGAT [22] investigate

the utility of knowledge graphs (KGs) and yield state-of-the-art

https://doi.org/10.1145/3340531.3411969
https://doi.org/10.1145/3340531.3411969

E

U-I

(a)

わEngineer

わGjobodjbm

わFohjoffs

)f*

)f.b*

I-W

わEngineer (

)

)f.e*

)f.c*

U-W

わEngineer

(c)

I-I

わEngineer

(b)

(d)

(

)

(

)

(

)

(

)

Figure 1: Four relations in TPR for job recommendation

performance on recommendation. However, as the above methods

are not particularly designed to model textual information, their

usage scenarios are limited to typical user-to-item recommendation

only. For example, models within the supervised paradigm predict

recommendation scores for a given user and an item; even though

such methods can encode textual information via a feature vector

(e.g., a bag-of-words representation), it is difficult to complete other

recommendation tasks, including item-to-item recommendation or

user-to-word recommendation.

An exception that deals solely with textual information is a

thread of studies that incorporates review texts within recommen-

dation models; instead of the commonly adopted top-𝑁 recom-

mendation, this thread of work considers rating-based prediction

only [2, 12, 13]. In contrast to prior studies, in this paper, we focus

on modeling another source of textual information—the item de-

scription. Compared to user reviews, the text in item descriptions

is usually easier to obtain and conveys specific and accurate infor-

mation regarding the corresponding items, thereby constituting

informative material for modeling user preference. It is of great

help in providing explainable recommendations.

Thus, in this paper, we propose text-aware preference ranking

(TPR), a framework in which we model the joint association of

user-item interaction and relations between items and associated

text for top-𝑁 recommendation. Motivated by preference ranking

in ranking-based CF [4, 20], we construct a joint likelihood function

that explicitly describes two explicit ranking structures: 1) item pref-

erence ranking (IPR) and 2) word relatedness ranking (WRR), where

IPR captures the item preference of each user and WRR captures

the word relatedness of each item. As these two structures are by

nature mutually dependent, except for modeling them, we propose

TPR-OPT, a simple yet effective learning criterion that additionally

includes implicit structures such as relatedness between items and

relatedness between words for a user; four types of structures are

shown in Figure 1 under the scenario of job recommendation. Note

that our design not only successfully describes the joint association

comprehensively but also naturally yields universal and powerful

representations for users, items, and texts that are suitable for a

range of recommendation tasks, including user-to-item, item-to-

item, and user-to-word recommendation, as well as item-to-word

reconstruction. The support of such variants of recommendation

tasks in a unified model indeed broadens the usage scope of our

model. For example, within a job recommendation scenario, user-to-

word recommendation can be of great help in providing users with

related skill sets mentioned in job descriptions, which can be done

naturally as the TPR-OPT simultaneously models user preference

on text.

We conduct extensive experiments on eight recommendation

datasets, including six publicly available Amazon datasets and two

privately collected datasets. To attest the capability of the learned

embeddings, we perform various types of tasks, including typical

user-to-item (cold-start) recommendation, item-to-word reconstruc-

tion, and user-to-word recommendation. Experimental results show

that by including textual information from item descriptions, the

proposed model consistently outperforms state-of-the-art baselines

on various tasks. We also discuss the efficiency of the proposed

method in terms of time and memory usage empirically. In sum-

mary, the contributions of this work are listed as follows.

• We present TPR, a text-aware recommendation framework that

jointly describes the association of user-item interactions and

relations between items and associated text.

• Within the TPR framework, we propose TPR-OPT, an effective

learning criterion that comprehensively models four types of

structures among users, items, and texts.

• By optimizing TPR-OPT, the learned embeddings of users, items,

and words are comparable; thus, any pair-wise similarity (e.g.,

user-to-item or user-to-word) can be obtained in a straightfor-

ward manner to support various types of recommendation tasks.

• We conduct extensive experiments on eight datasets, showing

the superiority of the proposed method over different advanced

models on various recommendation tasks.

• We provide an effective and efficient implementation, the source

code is available online at a GitHub repository
1
.

2 METHODOLOGY
In this section, we first introduce the problem definition of text-

aware recommendation in Section 2.1 and give an overview of our

proposed TPR framework that leverages both explicit and implicit

ranking structures in Section 2.2. Subsequently, in Section 2.3 we

introduce a joint learning objective for both explicit and implicit

structures and then discuss its optimization together with regular-

ization.

2.1 Problem Definition
Let𝑈 , 𝐼 , and𝑊 denote the sets of users, items, and words, respec-

tively. In this study we consider two types of relations between

the elements in these sets: 1) interaction between users and items,

denoted as 𝐸𝑢,𝑖 = {(𝑢, 𝑖) |𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 }, and 2) the “has-a” relation

between items and words, denoted as 𝐸𝑖,𝑤 = {(𝑖,𝑤) |𝑖 ∈ 𝐼 ,𝑤 ∈𝑊 },
where the words for each item are extracted from its description.

The goal of our model is to learn a representation matrix Θ ∈
R |𝑈 ∪ 𝐼 ∪𝑊 |×𝑑 that maps each user, item, or word to a𝑑-dimensional

embedding vector. The learned embedding vectors are thus suitable

for various types of recommendation tasks, including user-to-item,

1
https://github.com/cnclabs/codes.tpr.rec

item-to-item, and user-to-word recommendation, as well as item-

to-word reconstruction, as motivated in Section 1.

2.2 Proposed TPR Framework
The proposed TPR is designed to model the joint association of user-

item interactions and the relations between items and associated

words from their descriptions. Here, we use preference ranking [4,

20, 23] to describe such relations, for which the objective is to find

an embeddingmatrixΘ that maximizes the joint likelihood function

from observed user-item and item-word pairs:

OTPR ≡ max

∏
(𝑢,𝑖) ∈𝐸𝑢,𝑖

𝑝 (

IPR︷︸︸︷
>𝑢 ,

WRR︷︸︸︷
>𝑖 |Θ), (1)

where >𝑢 indicates the preference structure between two items for

the given user𝑢 ∈ 𝑈 , >𝑖 refers to the relatedness structure between

words for the given item 𝑖 ∈ 𝐼 . Specifically, 𝑗 >𝑢 𝑗 ′ denotes that
user 𝑢 prefers item 𝑗 over item 𝑗 ′, whereas 𝑤 >𝑖 𝑤

′
denotes that

word 𝑤 is with a higher probability of being in the description

of item 𝑖 than 𝑤 ′. From Eq. (1), the joint likelihood is composed

of two ranking structures: 1) >𝑢 , item preference ranking (IPR)

(described in Section 2.2.1) and 2) >𝑖 , word relatedness ranking

(WRR) (described in Section 2.2.2). Note that structures >𝑢 and

>𝑖 are by nature mutually dependent as the items that the given

user has interacted with overlap in these two structures. Therefore,

despite only explicitly observing these two structures, structures

such as relatedness between items and relatedness between words

for a user should also be considered in the joint likelihood function.

To realize such preference (relatedness) ranking, we create a set

of triples 𝐷𝑢 : 𝑈 × 𝐼 × 𝐼 based on user-item interactions 𝐸𝑢,𝑖 for >𝑢 ,

and another set of triples𝐷𝑖 : 𝐼×𝑊 ×𝑊 based on the has-a relations

between items andwords 𝐸𝑖,𝑤 for >𝑖 , as𝐷𝑢 = {(𝑢, 𝑗, 𝑗 ′) |∀𝑢 ∈ 𝑈 , 𝑗 ∈
𝐼+𝑢 ∧ 𝑗 ′ ∈ 𝐼\𝐼+𝑢 } and𝐷𝑖 = {(𝑖,𝑤,𝑤 ′) |∀𝑖 ∈ 𝐼 ,𝑤 ∈𝑊 +

𝑖
∧𝑤 ′ ∈𝑊 \𝑊 +

𝑖
}

respectively, where 𝐼+𝑢 = {𝑖 ∈ 𝐼 | (𝑢, 𝑖) ∈ 𝐸𝑢,𝑖 } denotes the set of items

that user 𝑢 has interacted with, and𝑊 +
𝑖

= {𝑤 ∈𝑊 | (𝑖,𝑤) ∈ 𝐸𝑖,𝑤}
denotes the set of words in the description of item 𝑖 . That is, for

each triple (𝑢, 𝑗, 𝑗 ′) ∈ 𝐷𝑢 , we have 𝑗 >𝑢 𝑗 ′. Similarly, for each triple

(𝑖,𝑤,𝑤 ′) ∈ 𝐷𝑖 , we have𝑤 >𝑖 𝑤
′
.

Figure 2 illustrates the overall concept of the proposed TPR

framework. Given a user-item interaction (𝑢, 𝑖) ∈ 𝐸𝑢,𝑖 , we consider
a joint likelihood function composed of one preference structure

on items for 𝑢 (i.e., IPR) and one relatedness structure on words for

𝑖 (i.e., WRR), as shown in the dashed box. Due to the dependency

between the explicit structures (a) and (d) shown in the figure,

two additional structures should be further modeled: (b) for the

similarity ranking of two other items w.r.t. the given item, and (c)

for the word relatedness ranking of two words w.r.t. the given user.

Below, in Sections 2.2.1 and 2.2.2, we discuss the two explicitly

considered structures, IPR and WRR, respectively, after which we

discuss how to design the objective to jointly consider the four

types of structures in Section 2.3.

2.2.1 Item Preference Ranking (IPR). With item preference ranking

(IPR), we focus on generating a personalized ranked list of items for

each user based on the observed user-item interaction by leveraging

the user-item-item triples𝐷𝑢 as training data to optimize the correct

ranking of item pairs [4, 20, 23]. For such an approach, BPR [20] is

a pioneering, well-known example in which the likelihood function

of IPR is formulated as

OIPR = max

∏
𝑢∈𝑈

𝑝 (>𝑢 |Θ)

∝ max ln

(∏
𝑢∈𝑈

𝑝 (>𝑢 |Θ)
)

= max ln

©«
∏

(𝑢,𝑗, 𝑗 ′) ∈𝐷𝑢

𝑝 (𝑗 >𝑢 𝑗 ′ |Θ)ª®¬
= max

∑
(𝑢,𝑗, 𝑗 ′) ∈𝐷𝑢

ln𝑝
(
𝑗 >𝑢 𝑗 ′ |Θ

)
. (2)

Recall that 𝐼+𝑢 is the item preference set of the given user 𝑢, and >𝑢
denotes the pairwise item preference for user 𝑢. It is common to

calculate 𝑝 (𝑗 >𝑢 𝑗 ′ |Θ) in Eq. (2) as

𝑝 (𝑗 >𝑢 𝑗 ′ |Θ) = 𝜎
(〈
Θ𝑢 ,Θ𝑗 − Θ𝑗 ′

〉)
, (3)

where ⟨·, ·⟩ denotes the dot product between two vectors, Θ𝑢 (Θ𝑗)

denotes the 𝑑-dimensional row vector from Θ for user 𝑢 ∈ 𝑈 (item

𝑗 ∈ 𝐼 , respectively) and 𝜎 (·) denotes the sigmoid function.

2.2.2 Word Relatedness Ranking (WRR). With theWRR component,

we seek to model the relation between items and associated words

from their description. Inspired by language modeling techniques

that learn the word semantics by the words distributions [10, 14, 15],

we proposemaximizing the likelihood function of relevant (positive)

item-word pairs over irrelevant (negative) item-word pairs for each

item, by leveraging the item-word-word triples in 𝐷𝑖 as training

data. Thus we have

OWRR = max

∏
𝑖∈𝐼

𝑝 (>𝑖 |Θ)

∝ max ln

(∏
𝑖∈𝐼

𝑝 (>𝑖 |Θ)
)

= max

∑
(𝑖,𝑤,𝑤′) ∈𝐷𝑖

ln𝑝 (𝑤 >𝑖 𝑤
′ |Θ) . (4)

Recall that >𝑖 denotes the pairwise word relatedness for item 𝑖 (i.e.,

𝑤 >𝑖 𝑤
′
indicates that word 𝑤 is more related than word 𝑤 ′ to

item 𝑖). In Eq. (4), 𝑝 (𝑤 >𝑖 𝑤
′ |𝑖) is calculated as

𝑝 (𝑤 >𝑖 𝑤
′ |𝑖) = 𝜎 (⟨Θ𝑖 ,Θ𝑤 − Θ𝑤′⟩) , (5)

where Θ𝑤 is the 𝑑-dimensional row vector from Θ for word𝑤 ∈𝑊 .

2.3 Joint Learning of Implicit and Explicit
Ranking Structures

Next, we illustrate how to design an objective function that jointly

considers the four types of explicit and implicit structures shown

in Figure 2(a)–(d). To our best knowledge, although various sys-

tems have been developed that incorporate IPR concepts into their

recommendation models, none leverages the concept of WRR to

fuse textual information into the models. More importantly, due to

the dependency between IPR and WRR, it is unreasonable to model

these two structures independently, that is, to directly maximize

the product of Eqs. (3) and (5).

To this end, in this paper, we propose a learning approach based

on the TPR framework for text-aware recommendation, for which

+

R

(,) >
か Lあ R

>

IPR WRR

u i

(u, j, j′) ∈ Du (i, w, w′) ∈ Di

あ R か Lあ R か L

Θu

(a) (b)

(c) (d)

Θj Θj′
ΘiΘj Θj′

ΘuΘw Θw′
ΘjΘw Θw′

Figure 2: Overview of proposed TPR framework

we define the calculation for the joint likelihood function (see

Eq. (1)) for a user-item pair (𝑢, 𝑖) ∈ 𝐸𝑢,𝑖 as

𝑝 (𝑗 >𝑢 𝑗 ′,𝑤 >𝑖 𝑤
′ |Θ)

= 𝜎
(
⟨Θ𝑢 + Θ𝑖 , (Θ𝑗 − Θ𝑗 ′) + (Θ𝑤 − Θ𝑤′)⟩

)
= 𝜎

(
⟨Θ𝑢 , (Θ𝑗 − Θ𝑗 ′)⟩ + ⟨Θ𝑢 , (Θ𝑤 − Θ𝑤′)⟩ +
⟨Θ𝑖 , (Θ𝑗 − Θ𝑗 ′)⟩ + ⟨Θ𝑖 , (Θ𝑤 − Θ𝑤′)⟩) , (6)

where 𝑗 ∈ 𝐼+𝑢 , 𝑗
′ ∈ 𝐼\𝐼+𝑢 , 𝑤 ∈ 𝑊 +

𝑖
, and 𝑤 ′ ∈ 𝑊 \𝑊 +

𝑖
. As shown,

the above joint likelihood in Eq. (6) can be decomposed into the

following four components:

(a) ⟨Θ𝑢 ,Θ𝑗 − Θ𝑗 ′⟩: Modeling the item preference ranking (IPR)

between 𝑗 and 𝑗 ′ for user 𝑢 (see Figure 2(a) and Eq. (3));

(b) ⟨Θ𝑖 ,Θ𝑗 −Θ𝑗 ′⟩: Modeling the item similarity to item 𝑖 regard-

ing items 𝑗 and 𝑗 ′ (see Figure 2(b));
(c) ⟨Θ𝑢 ,Θ𝑤 − Θ𝑤′⟩: Modeling the word relatedness ranking to

user 𝑢 regarding words𝑤 and𝑤 ′ (see Figure 2(c));
(d) ⟨Θ𝑖 ,Θ𝑤 − Θ𝑤′⟩: Modeling the word relatedness ranking to

item 𝑖 regarding words𝑤 and𝑤 ′ (see Figure 2(d) and Eq. (5)).

Note that the item 𝑖 and 𝑗 in (b) are both positive items for user 𝑢

(i.e., 𝑖, 𝑗 ∈ 𝐼+ (𝑢)); as a result, for this part, the model tends to cluster

items that the user has interacted with in the training data in the

embedding space. Moreover, word𝑤 in (c) is extracted from the de-

scription of an item 𝑖 that the user has interacted with (i.e., 𝑖 ∈ 𝐼+𝑢);
thus, this part of modeling captures user word preferences. It is

worth remembering that this elegant design for the objective not

only successfully describes the joint likelihood function in Eq. (1)

comprehensively but also naturally yields a powerful representa-

tion matrix Θ that is suitable for a range of recommendation tasks,

including user-to-item, item-to-item, and user-to-word recommen-

dation, as well as item-to-word reconstruction.

With Eq. (6), we formulate the maximum posterior estimator to

derive our optimization criterion for TPR as

TPR-OPT

:= ln𝑝 (Θ| >𝑢 , >𝑖) ∝ ln𝑝 (>𝑢 , >𝑖 |Θ)𝑝 (Θ)

= ln

∏
(𝑢,𝑗, 𝑗 ′) ∈𝐷𝑢 ,
(𝑖,𝑤,𝑤′) ∈𝐷𝑖

𝑝 (𝑗 >𝑢 𝑗 ′,𝑤 >𝑖 𝑤
′ |Θ)𝑝 (Θ)

=
∑

(𝑢,𝑗, 𝑗 ′) ∈𝐷𝑢 ,
(𝑖,𝑤,𝑤′) ∈𝐷𝑖

ln𝜎
(
⟨Θ𝑢 + Θ𝑖 , (Θ𝑗 − Θ𝑗 ′) + (Θ𝑤 − Θ𝑤′)⟩

)
− 𝜆Θ ∥Θ∥2 ,

(7)

where 𝜆Θ is a model-specific regularization parameter.

2.3.1 Optimization. The most common algorithms for gradient

ascent are full and stochastic gradient ascent. In the first case, in

each step the full gradient over all training data is calculated after

which the model parameters are updated according to learning

rate 𝛼 :

Θ←− Θ + 𝛼
(
𝜕TPR-OPT

𝜕Θ

)
.

Although full gradient ascent generally leads to an ascent in the

correct direction, its convergence is slow. As a result, in this paper,

the objective function in Eq. (7) is instead maximized by adopting

asynchronous stochastic gradient ascent—the opposite of asynchro-

nous stochastic gradient descent (ASGD) [18]—to efficiently update

parameters Θ in parallel. Specifically, for each given (𝑢, 𝑖) pair, we
randomly sample one positive item as 𝑗 and one negative item as 𝑗 ′

for user 𝑢 and a positive-negative word pair as (𝑤 ,𝑤 ′) for item 𝑖 ,

resulting in triplets (𝑢, 𝑗, 𝑗 ′) ∈ 𝐷𝑢 and (𝑖,𝑤,𝑤 ′) ∈ 𝐷𝑖 for updating

the parameters with the gradient defined as

𝜕TPR-OPT

𝜕Θ
=

𝜕

𝜕Θ
ln𝜎 (𝑥) − 𝜆Θ

𝜕

𝜕Θ
∥Θ∥2 (8)

∝ 𝑒−𝑥

1 + 𝑒−𝑥
𝜕

𝜕Θ
𝑥 − 𝜆ΘΘ, (9)

where 𝑥 := ⟨Θ𝑢 + Θ𝑖 , (Θ𝑗 − Θ𝑗 ′) + (Θ𝑤 − Θ𝑤′)⟩.

2.3.2 Regularization. In practice, the regularization term is used

to reduce model complexity and generally benefits model gener-

alization ability. As the relations in IPR and WRR structures are

essentially different, we enable TPR-OPT to have different weights

for regularization. By rewriting Eq. (9), each row vector Θ𝑘 in Θ is

updated by

𝜕TPR-OPT

𝜕Θ𝑘

=
𝑒−𝑥

1 + 𝑒−𝑥
𝜕

𝜕Θ𝑘

𝑥 − Λ(𝑘)Θ𝑘

where

Λ(𝑘) :=
{
𝜆IPR if 𝑘 is an element of tuple (𝑢, 𝑗, 𝑗 ′) ∈ 𝐷𝑢 ,

𝜆WRR if 𝑘 is an element of tuple (𝑖,𝑤,𝑤 ′) ∈ 𝐷𝑖 .

Above, the two hyperparameters for regularization—𝜆IPR and 𝜆WRR—

allow additional flexibility in adjusting the relation modeling for

different types of tasks. The effect of adopting different values of

𝜆IPR and 𝜆WRR is discussed in Section 3.

3 EXPERIMENT
3.1 Datasets
To examine the performance of the proposed model, we conducted

experiments on eight datasets, including six public benchmarks and

two private real-world datasets, the statistics of which are listed

in Table 1. The six public benchmarks are from the Amazon re-

view dataset [17],
2
for which we adopted user-item ratings and

item descriptions in the experiments. Note that for the Amazon

data, we treated items with ratings as positive feedback and the

rest as negative feedback, and removed users that had rated fewer

than three items. For the two private datasets, the first is the On-

line Professional Network data in Singapore, called SG-OPN, with

about 10,000 persons with their working experience and 12,000 job

postings, for which we treat each person and his/her listed jobs

as the user-item interactions and the job descriptions as the item

descriptions; the second one is the course-taking data from a major

university in Asia, called the Course dataset, with 17,000 students

with their course-taking logs and 600 courses with descriptions,

for which we treat each student and his/her taken courses as the

user-item interactions and the course descriptions as the item de-

scriptions. Thus, all of our experimental datasets contain user-item

interactions and textual item descriptions. For preprocessing, we

converted the user-item interactions into implicit feedback, and for

item descriptions, we filtered out words with term frequencies of

less than five or words with a document frequency of less than ten

percent of the corresponding corpus. Table 1 lists the statistics of

the preprocessed data for each dataset, including the number of

words, the amount of implicit feedback (U-I edges), and the number

of relations between items and words (I-W edges).

3.2 Baselines
We compared our model with seven baseline methods. The first

two, BPR [20] and WARP [23], leverage user-item interactions only

for recommendation; the third and fourth, SINE [25] and HPE [3],

are graph embedding methods; the fifth, GATE [13], is a model

incorporating reviews for recommendation; the last two, CKE [26]

2
https://nijianmo.github.io/amazon/index.html

Users Items Words U-I edges I-W edges

Amazon-Magazine 2,825 1,299 6,740 11,685 9,4381

Amazon-Beauty 4,801 4,865 4,115 11,685 159,475

Amazon-Application 11,823 5,554 9,712 42,675 410,079

Amazon-Software 13,634 9,325 11,111 57,793 766,112

Amazon-Fashion 19,875 36,080 5,076 75,596 442,136

Amazon-Kindle 363,303 356,634 36,445 3,334,521 6,794,209

Course ∼17,000 ∼600 ∼3,000 ∼300,000 ∼150,000
SG-OPN ∼10,000 ∼12,000 ∼10,100 ∼30,000 ∼1,100,000

Table 1: Dataset statistics

and KGAT [22], are state-of-the-art knowledge-based recommen-

dation methods. Below we briefly describe each method and how

we adopted these methods under our settings.

• BPR [20] (Bayesian Personalized Ranking) adopts pairwise rank-

ing loss for personalized recommendation and exploits direct

user-item interaction to separate negative items from positive

items.

• WARP [23] (Weighted Approximate-Rank Pairwise) improves

ranking-based models based on BPR, weighing pairwise viola-

tions depending on their positions in a ranked list.

• SINE [25] (Scalable Incomplete Network Embedding) is an attrib-

uted network embedding algorithm, which incorporates words

as item attributes.

• HPE [3] (Heterogeneous Preference Embedding) encodes user

preferences and query intentions into low-dimensional vector

spaces.

• GATE [13] (Gated Attentive-autoencoder) is an end-to-end rec-

ommendation algorithms that fuses hidden representations of

item contents and binary ratings using a neural gating structure.

• CKE [26] (Collaborative Knowledge Base Embedding) is a knowl-

edge based recommendation method which exploits semantic

knowledge derived from TransR [11] to enhance the performance

of matrix factorization.

• KGAT [22] (Knowledge Graph Attention Network) is a recom-

mendation model that explicitly models high-order relations in

a collaborative knowledge graph under a graph neural network

framework.

Note that GATE can be used for typical user-item recommendation

only as it is an end-to-end recommendation model. Other than BPR

and WARP, all other baselines encode textual information; how-

ever, only HPE, CKE, and KGAT can be used for tasks that involve

node embeddings for words, e.g., cold-start recommendation, item-

to-word reconstruction, and user-to-word recommendation. The

implementations for the seven baselines are listed in the footnote.
3

3.3 Experimental Settings
To attest the versatility of the learned embeddings of users, items,

and words, we completed the following recommendation tasks in

the following experiments.

3
WARP: https://github.com/lyst/lightfm; HPE: https://github.com/cnclabs/smore; SINE:

https://github.com/benedekrozemberczki/karateclub; BPR, CKE, KGAT: https://github.

com/xiangwang1223/knowledge_graph_attention_network; GATE: https://github.

com/allenjack/GATE

https://github.com/lyst/lightfm
https://github.com/cnclabs/smore
https://github.com/benedekrozemberczki/karateclub
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/allenjack/GATE
https://github.com/allenjack/GATE

(1) Recommendation tasks:

(a) User-to-item recommendation: In this task, we provide a

list of recommended items for each user; for each user 𝑢 the

items are ranked by the score ⟨Θ𝑢 ,Θ𝑗 ⟩, where 𝑗 ∈ 𝐼 .
(b) Item-to-item recommendation: This task is the same as

the previous task, except that the items are ranked by the

score

∑
𝑖∈𝐼+𝑢 ⟨Θ𝑖 ,Θ𝑗 ⟩, where 𝑗 ∈ 𝐼 . Note that for this task,

instead of using the user embedding to calculate the score,

we calculate it using the embeddings of items that the user

has interacted with in the training data.

(2) Cold-start recommendation tasks:

(a) User-to-item recommendation: In this task, we recom-

mend items that are completely new, which means that the

recommended items are not included in the training data. In

this scenario, we generate the embedding of a new item 𝑗

by Θ𝑗 =
1

|𝑊 +
𝑗
|
∑

𝑤∈𝑊 +
𝑗
Θ𝑤 . For each user 𝑢, the recommen-

dations are ranked by ⟨Θ𝑢 ,Θ𝑗 ⟩.
(b) Item-to-item recommendation: This task is same as the

above cold-start setting, but the items are ranked by the score∑
𝑖∈𝐼+𝑢 ⟨Θ𝑖 ,Θ𝑗 ⟩.

(3) Word-related tasks:

(a) Item-to-word reconstruction: With this task, we evaluate

the text awareness of the proposed model. Given an item,

this task is to restore the contained relations between the

given item and the words from its description. The score of

an item-word pair (𝑗,𝑤) is computed by ⟨Θ𝑗 ,Θ𝑤⟩.
(b) User-to-word recommendation: In this task, we are to pre-

dict a list of words for each user; note that the recommended

words are new, meaning that these words do not appear in

the descriptions of items that the user has interacted with in

the training data. The recommendations are then ranked by

⟨Θ𝑢 ,Θ𝑤⟩, where𝑤 ∈𝑊 \𝑊 +𝑖 for all 𝑖 ∈ 𝐼+𝑢 .

For all of these tasks, we focus on the performance of top-𝑁

recommendation, using two common recommendation metrics for

evaluation: recall (denoted as Recall@𝑁) and normalized discount

cumulative gain (denoted as NDCG@𝑁). For all the datasets, we

randomly divided the user-item interactions into 80% and 20% as the

training set and the testing set, respectively. The recommendation

pool for each user was generated as the collection of positive items

with 1,000 randomly selected negative items. Similar settings can

be found in [8, 24]. For the cold-start recommendation tasks, the

recommendation pool contained only those positive items that were

not in the training set. The final reported results were calculated by

averaging the results over five repetitions. We used all words in the

item descriptions; each unique word𝑤 corresponds an embedding

Θ𝑤 (i.e., a unigram model). In our experiments, the dimensions of

the embedding vectors were set to 128, and all the hyper-parameters

of the compared models were determined via a grid search over

different settings, from which the combination that lead to the best

performance was chosen. The training iteration we searched for

the compared methods was {50, 100, 200}. For the proposed TPR, to
clearly illustrate the function of combined IPR/WRR regularization,

we fixed 𝜆IPR = 0.025 and report the performance by varying 𝜆WRR

in the experiments.

3.4 Experimental Results
In the following sections, we demonstrate the results of the tasks

listed in Section 3.3. First, we conduct experiments on typical top-𝑁

recommendation, the results of which are shown in Sections 3.4.1

and 3.4.2. Second, typical top-𝑁 recommendation for the cold-star

scenarios is considered in Sections 3.4.3 and 3.4.4. Finally, we exam-

ine whether a model successfully encodes the word knowledge into

its learned representations by performing item-word reconstruction

and user-to-word recommendation in Sections 3.4.5 and 3.4.6, re-

spectively. Note that in the reported results , “†” symbol in Tables 2-7

indicates the best performing method among all the baseline meth-

ods; “*” and “Improv. (%)” denote statistical significance at 𝑝-value

< 0.01 with a paired 𝑡-test and the percentage improvement of the

proposed model, respectively, with respect to the best performing

value in the baselines.

3.4.1 User-to-item Recommendation (Task 1-a). This is the typical
recommendation task evaluated in most of the literature in recom-

mender systems. Table 2 tabulates the results in terms of Recall@10

and NDCG@10 of the proposed TPR and the seven baseline meth-

ods, where the best results are highlighted in bold. Note that for

the Amazon-Kindle dataset, we do not report results of GATE, CKE,

and KGAT due to computational resource limitations.
4
Below, we

itemize the findings from Table 2.

• In general, the models incorporating the textual information

outperform the ones leveraging solely user-item interactions (i.e.,

BPR and WARP). However, as SINE and GATE are not originally

proposed to handle the user-item ranking problem, these two

methods obtain relative weak results even though they include

the text data into their models.

• HPE, CKE, and KGAT are considered as the most competitive

baselines in this task due to their top performance. Even so, the

proposed TPR generally gains significantly better results than the

three methods for seven datasets in terms of both Recall@10 and

NDCG@10, except for the smallest dataset, Amazon-Magazine.

The results suggest that our method could perform better in

larger datasets with more interactions and textual information.

• It is feasible to train the proposed model on very large-scale

datasets, such as the Amazon-Kindle dataset; many other ad-

vanced models however encounter either the training efficiency

or memory capacity issues. Comparison on the training time

and memory usage among different models are reported and

disucssed in Section 3.5.2.

• For such a user-to-item recommendation task, adopting a larger

regularization on the WRR structure, 𝜆WRR, benefits model gen-

eralization ability regarding word relatedness to items, more

analysis for which is described in Section 3.5.1.

• In sum, the overall improvement of the proposed TPR ranges

from 1.00% to 18.56% in terms of Recall@10 and from 3.70% to

24.75% in terms of NDCG@10; such improvements should be

considered as measurable ones.

3.4.2 Item-to-item Recommendation (Task 1-b). For this and the fol-
lowing tasks in Sections 3.4.3-3.4.6, we only report results conducted

4
The model is unable to be loaded into the GPU with 32GB memory or the training is

unable to be finished within days.

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] 0.3306 0.1734 0.4278 0.3468 0.3035 0.1590 0.1563 0.1223

WARP [23] 0.3435 0.1892 0.3468 0.3437 0.3016 0.1655 0.1815 0.1298

SINE [25] 0.0360 0.0083 0.0549 0.0157 0.1283 0.0280 0.0865 0.0181

HPE [3] 0.3419 0.1377 † 0.4773 † 0.3652 † 0.3552 0.1736 † 0.2126 † 0.1393
GATE [13] 0.2720 0.0489 0.3940 0.0812 0.1336 0.0225 0.0819 0.0186

CKE [26] 0.3838 0.2061 0.4208 0.3450 0.2933 0.1562 0.1581 0.1230

KGAT [22] † 0.4156 † 0.2156 0.4321 0.3558 0.3213 † 0.1862 0.1862 0.1268

TPR (𝜆WRR = 0.001) 0.3681 0.1599 *0.4950 *0.3735 *0.3937 *0.1779 *0.2394 *0.1525

TPR (𝜆WRR = 0.005) 0.4101 0.1880 *0.4925 *0.3783 *0.4097 *0.1951 *0.2270 *0.1462

TPR (𝜆WRR = 0.01) 0.4182 0.1840 *0.4840 *0.3793 *0.3997 *0.1971 *0.2258 *0.1482

Improv. (%) −0.62% −12.80% +3.70% +3.86% +15.34% +5.85% +6.77% +6.38%

Amazon-Software Amazon-Kindle Course SG-OPN

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] † 0.3669 0.1779 0.4414 0.2097 0.5731 0.4129 0.1008 0.0339

WARP [23] 0.3423 0.1556 † 0.5461 † 0.3392 0.5340 0.3639 † 0.2623 † 0.1131
SINE [25] 0.0976 0.0257 0.2812 0.1394 0.0357 0.0168 0.0412 0.0150

HPE [3] 0.3658 0.1405 0.5228 0.2803 0.3391 0.2294 0.0047 0.0040

GATE [13] 0.1326 0.0202 - - 0.4477 0.3170 0.0010 0.0035

CKE [26] 0.3448 0.1497 - - † 0.6094 † 0.4583 0.1050 0.0837

KGAT [22] 0.3907 † 0.1847 - - 0.5902 0.4294 0.1473 0.0512

TPR (𝜆WRR = 0.001) *0.3898 0.1615 *0.5682 *0.3448 0.5735 0.4177 *0.3110 *0.1411
TPR (𝜆WRR = 0.005) *0.4252 0.1844 *0.6065 *0.3722 0.6014 0.4422 *0.3094 *0.1392

TPR (𝜆WRR = 0.01) *0.4319 *0.1956 *0.6164 *0.3804 *0.6155 0.4468 *0.3086 *0.1434

Improv. (%) +17.71% +5.90% +12.87% +12.14% +1.00% −2.50% +18.56% +24.75%
Table 2: Performance on user-to-item recommendation

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

BPR [20] 0.3637 0.1964 0.4433 0.3689 0.3472 † 0.1871 0.1655 0.1244 0.3993 † 0.1933
WARP [23] 0.2769 0.1615 0.4248 0.3577 0.2686 0.1438 0.1435 0.1130 0.2989 0.1444

SINE [25] 0.1365 0.0877 0.2813 0.1041 0.1873 0.0857 0.1663 0.1160 0.2636 0.1065

HPE [3] 0.3584 0.1376 0.4575 0.3584 0.3380 0.1600 † 0.2091 † 0.1326 0.3552 0.1501

CKE [26] 0.3903 0.1986 0.4469 0.3570 0.3353 0.1838 0.1585 0.1245 0.3766 0.1887

KGAT [22] † 0.3972 † 0.2049 † 0.4587 † 0.3710 † 0.3645 0.1864 0.1530 0.1155 † 0.4066 0.1699

TPR (𝜆WRR = 0.001) 0.3911 0.1781 *0.4855 *0.3803 *0.3786 0.1890 *0.2330 *0.1541 0.3992 0.1736

TPR (𝜆WRR = 0.005) *0.4155 0.2038 *0.4822 *0.3797 *0.3990 *0.1960 *0.2195 *0.1487 *0.4233 0.1946

TPR (𝜆WRR = 0.01) *0.4201 0.2057 *0.4755 *0.3819 *0.3859 *0.2036 *0.2133 *0.1477 *0.4245 *0.1993

Improv. (%) +5.76% +0.39% +5.84% +2.93% +9.46% +8.81% +11.42% +16.21% +4.40% +3.10%
Table 3: Performance on item-to-item recommendation

on the five public Amazon datasets due to space limitations. Ta-

ble 3 reports the results of item-to-item recommendation. Although

many studies evaluate their methods with user-to-item recommen-

dation, practically, item-to-item has a wider range of usage in many

applications, such as “similar products” in e-commerce sites and

recommendations under the heading “because you watched...” in

video streaming services. Recall that GATE cannot be used for tasks

other than typical user-item recommendation.

• Similar to the user-to-item recommendation, the models consid-

ering the textual information generally gain better performance

than the ones leveraging purely user-item data.

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2454 † 0.0609 † 0.1203 † 0.0419 † 0.0794 † 0.0101 † 0.1326 † 0.0344 † 0.1149 † 0.0114
CKE [26] 0.0636 0.0343 0.0093 0.0058 0.0072 0.0035 0.0090 0.0046 0.0104 0.0056

KGAT [22] 0.0363 0.0254 0.0152 0.0035 0.0033 0.0035 0.0152 0.0035 0.0083 0.0035

TPR (𝜆WRR = 0.001) *0.2636 *0.0875 *0.1654 *0.0640 *0.1569 *0.0340 *0.1698 *0.0700 *0.1511 *0.0337
TPR (𝜆WRR = 0.005) *0.2590 *0.0919 *0.1483 *0.0570 *0.1175 *0.0200 0.1354 *0.0527 0.1176 0.0168

TPR (𝜆WRR = 0.01) *0.2863 0.0609 *0.1320 *0.0501 *0.1026 *0.0167 0.1055 0.0374 0.0887 0.0106

Table 4: Performance on cold-start user-to-item recommendation

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2090 † 0.0609 † 0.1133 † 0.0396 † 0.0794 † 0.0101 † 0.1337 † 0.0405 0.1106 0.0139

CKE [26] 0.0727 0.0343 0.0093 0.0035 0.0072 0.0035 0.0090 0.0046 0.0104 0.0056

KGAT [22] 0.0772 0.0432 0.0443 0.0117 0.0586 0.0068 0.0282 0.0080 † 0.1164 † 0.0181
TPR (𝜆WRR = 0.001) *0.2954 *0.0697 *0.1483 *0.0617 *0.1496 *0.0200 *0.1681 *0.0546 0.1168 *0.0264
TPR (𝜆WRR = 0.005) 0.2863 0.0520 *0.1320 *0.0454 0.1225 0.0167 0.1179 *0.0485 0.0883 0.0183

TPR (𝜆WRR = 0.01) 0.2545 0.0520 *0.1250 *0.0431 0.1099 0.0167 0.1066 0.0400 0.0981 0.0139

Table 5: Performance on cold-start item-to-item recommendation

• Similar to the user-to-item recommendation, HPE, CKE and

KGAT still serve as strong baselines; even so, the proposedmethod

consistently yields best performance compared to them. The over-

all improvement of TPR ranges from 4.40% to 11.42% in terms of

Recall@10 and 0.39% to 16.21% in term of NDCG@10 for the five

datasets.

3.4.3 Cold-start User-to-item Recommendation (Task 2-a). In or-

der to recommend completely new items to users, which means

that the items are not included in the training data, content-based

information is crucial for such a cold-start scenario. Here we fo-

cus on the performance of recommending completely new items,

the representations of which are obtained by averaging the word

representations from the item descriptions, as described in Sec-

tion 3.3. Recall that for tasks that involve word embeddings, i.e.,

for cold-start recommendation, item-to-word reconstruction, and

user-to-word recommendation, only HPE, CKE, and KGAT are ap-

plicable.

• As shown in Table 4, for such a cold-start scenario, TPR outper-

forms all the state-of-the-art methods, including HEP, CKE, and

KGAT. This superiority not only demonstrates the effectiveness

of TPR exploring unseen items, but also reveals the capability of

TPR modeling textual information for recommendation.

• In addition, we also notice that TPR obtains better recommenda-

tion results while adopting a smaller regularization on the WRR

structure, 𝜆WRR. This is because with a small 𝜆WRR, the model

strengthens the relations between items and words and ensures

the words embedding quality, thereby benefiting the cold-start

recommendation tasks.

3.4.4 Cold-start Item-to-item Recommendation (Task 2-b). Similar

to the previous task, this task is also to recommend completely new

items to users. For cold-start items, we generate their embeddings by

averaging the embeddings of words contained in their descriptions.

• Table 5 shows that TPR also significantly outperforms all the

compared methods for such a cold-start situation, which demon-

strates the superiority of TPR modeling the word preference for

recommendation.

• As CKE and KGAT are not designed for solving the cold-start

problem, both methods yield poor performance for the two cold-

start recommendation tasks in Sections 3.4.3 and 3.4.4,

3.4.5 Item-to-word Reconstruction (Task 3-a). In order to verify the

TPR’s capability of modeling textual information, we design this

task of measuring how many related words can be captured by the

learned item embeddings.

• Table 6 shows that, for such an item-to-word reconstruction

task, TPR outperforms all the compared methods, including HPE,

CKE, and KGAT. Similar to the phenomenon mentioned in Sec-

tion 3.4.3, a small 𝜆WRR strengthens the item-word relations,

which is clearly demonstrated in this experiment. Note that a

larger word regularization allows TPR to explore missing rela-

tions and perform better in traditional recommendation tasks.

• The reason why CKE performs ineffectively is that this method

has no direct modeling for relations between items and words;

thus the learned embeddings cannot reflect the closeness between

items and words.

3.4.6 User-to-word Recommendation (Task 3-b). Similarly, to verify

the TPR’s capability of modeling word preference on items, we turn

to conduct the experiments from the perspective of users.

• Table 7 shows that TPR consistently yields the great performance

on all the datasets in termso of both Recall@10 and NDCG@10,

suggesting that TPR is able to connect unseen items by matching

their descriptions via the TPR’s user-word preference modeling.

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670

KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (𝜆WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (𝜆WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552

TPR (𝜆WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723

KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (𝜆WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332

TPR (𝜆WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (𝜆WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation
Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (_WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (_WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (_WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (_WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (_WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (_WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization

Figure 4: Memory Usage

i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small _WRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large _WRR encourages the model to explore unseen word relations

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR0

200

400

10000

12000

14000

S
ec

on
ds

Time Usage

Figure 5: Execution Time Usage

for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (_WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (_WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (_WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (_WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (_WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (_WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization

Figure 4: Memory Usage

i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small _WRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large _WRR encourages the model to explore unseen word relations

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR0

200

400

10000

12000

14000

S
ec

on
ds

Time Usage

Figure 5: Execution Time Usage

for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (_WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (_WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (_WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (_WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (_WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (_WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization

Figure 4: Memory Usage

i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small _WRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large _WRR encourages the model to explore unseen word relations

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR0

200

400

10000

12000

14000

S
ec

on
ds

Time Usage

Figure 5: Execution Time Usage

for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (_WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (_WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (_WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (_WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (_WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (_WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization

Figure 4: Memory Usage

i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small _WRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large _WRR encourages the model to explore unseen word relations

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR0

200

400

10000

12000

14000

S
ec

on
ds

Time Usage

Figure 5: Execution Time Usage

for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.7378 † 0.5910 † 0.7423 † 0.5651 † 0.7015 † 0.5383 † 0.5680 † 0.4927 † 0.5788 † 0.3682
CKE [26] 0.0441 0.0502 0.0222 0.0296 0.0435 0.0398 0.0124 0.0134 0.0635 0.0670
KGAT [22] 0.5273 0.4414 0.2884 0.2386 0.4109 0.2758 0.1869 0.1609 0.5138 0.3206

TPR (_WRR = 0.001) *0.8371 *0.7653 *0.8244 *0.7343 *0.8530 *0.7595 *0.8645 *0.8037 *0.7159 *0.4703
TPR (_WRR = 0.005) 0.6294 0.5448 0.4738 0.3849 0.6109 0.5025 0.4930 0.4348 0.5476 0.3552
TPR (_WRR = 0.01) 0.5279 0.4411 0.4270 0.3580 0.4743 0.3722 0.3284 0.2825 0.4632 0.2949

Table 6: Performance on item-to-word reconstruction

Amazon-Magazine Amazon-Beauty Amazon-Applications Amazon-Fashion Amazon-Software

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

HPE [3] † 0.2002 † 0.1938 † 0.2206 † 0.1684 † 0.1955 † 0.1543 † 0.0829 † 0.0725 † 0.2414 † 0.1971
CKE [26] 0.0374 0.0576 0.0173 0.0263 0.0435 0.0398 0.0189 0.0213 0.0691 0.0723
KGAT [22] 0.0248 0.0375 0.0117 0.0161 0.0123 0.0201 0.0463 0.0644 0.0073 0.0153

TPR (_WRR = 0.001) 0.1996 0.1941 0.3411 *0.2943 0.1891 0.1556 *0.1053 *0.0833 *0.3018 0.2332
TPR (_WRR = 0.005) *0.2249 *0.2190 *0.3728 *0.3147 0.1818 0.1537 *0.1134 *0.0865 *0.2872 *0.2482
TPR (_WRR = 0.01) *0.2274 *0.2198 *0.3589 *0.2948 0.1690 0.1447 *0.1050 *0.0767 *0.2625 *0.2455

Table 7: Performance on user-to-word recommendation

Figure 3: Sensitive on Regularization

Figure 4: Memory Usage

i.e., user-to-item and item-to-item recommendations. In contrast, for
the tasks that involve word embeddings for score calculation (see
Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for the
task of item-to-word reconstruction.

Figure 3 illustrates this phenomenon with respect to the perfor-
mance on the two tasks: user-to-item recommendation and item-to-
word reconstruction. The reason for such a phenomenon is due to
the fact that a small _WRR strengthens the item-word relations and
ensures the words embedding quality, thereby benefiting the recon-
struction and the cold-start recommendation tasks; on the contrary, a
large _WRR encourages the model to explore unseen word relations

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR0

200

400

10000

12000

14000
S

ec
on

ds
Time Usage

Figure 5: Execution Time Usage

for generating item embeddings with better generalization ability,
thereby leading to better performance in the recommendation tasks.
Hence, such a regularization weight can be treated as a trade-off
parameter allowing additional flexibility in adjusting the relation
modeling for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5
plot the time usage and the memory usage for model training on
the Amazon-Fashion dataset, which is the largest dataset among
all public datasets that the advanced models, GATE, CKE, and
KGAT, can deal with under reasonable resource constrains. Note

Figure 3: Sensitive on Regularization

BPR WARP SINE HPE GATE CKE KGAT TPR
0

1000

2000

3000

4000

M
eg

ab
yt

es

Memery Usage

Figure 4: Memory Usage

3.5 Parameter Sensitivity and Memory and
Time Usage

3.5.1 Parameters Sensitivity on Regularization. The results listed
in Tables 2-7 suggest that adopting a larger regularization on the

WRR structure (i.e., a larger 𝜆WRR), seems beneficial to the tasks

that directly use user and item embeddings for score calculation,

i.e., user-to-item and item-to-item recommendations. In contrast,

for the tasks that involve word embeddings for score calculation

(see Sections 3.4.3-3.4.6), the phenomenon is inverse, especially for

the task of item-to-word reconstruction.

E

2000

7000

12000

17000

BPR WARP SINE HPE GATE CKE KGAT TPR
0

200

400

BPR WARP SINE HPE GATE CKE KGAT TPR
0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

Time Usage

BPR WARP SINE HPE GATE CKE KGAT TPR
0

2000

4000

6000

8000

10000

12000

14000

Se
co

nd
s

Time Usage

Figure 5: Execution Time Usage

Figure 3 illustrates this phenomenon with respect to the perfor-

mance on the two tasks: user-to-item recommendation and item-

to-word reconstruction. The reason for such a phenomenon is due

to the fact that a small 𝜆WRR strengthens the item-word relations

and ensures the words embedding quality, thereby benefiting the

reconstruction and the cold-start recommendation tasks.Hence,

such a regularization weight can be treated as a trade-off parameter

allowing additional flexibility in adjusting the relation modeling

for different types of tasks.

3.5.2 Memory Usage and Execution Time. Figures 4 and 5 plot the

time and memory usage for model training on the Amazon-Fashion

dataset, which is the largest dataset among all public datasets that

those advanced models, such as KGAT, can address under reason-

able resource constrains. Note that the values reported in the figure

would be variant when different implementations are applied; the

listed numbers are based on the implementations listed in foot-

note 3. With our implementation, TPR costs around 20 seconds to

complete the whole training process and is much faster than other

advanced models. Moreover, our model utilizes less memory and

works only on CPUs, while CKE and KGAT adopt GPU for compu-

tation with more memory usage. Due to the simplicity of our model

deign, the actual time usage of our model is near to the primitive

matrix factorization models as the major additional computation

regards the process of sampling the tuples for optimization. It is

worth mentioning that it is hard to analyze time and memory usage

regard complexity as the compared baselines and our method are

essentially dissimilar in many aspects, which is the reason why we

here compare the time and memory usage empirically.

4 CONCLUSION
In this paper, we propose TPR, a text-aware recommendation frame-

work that models the joint association of user-item interaction and

relations between items and associated text for top-𝑁 recommenda-

tion. Using the TPR framework, we design an optimization criterion

to model four types of ranking relations, and yield a unified and

effective model on various types of tasks. Extensive experiments

for six different recommendation/reconstruction tasks are provided

to attest the effectiveness of those learned embeddings. The results

show that TPR not only surpasses most state-of-the-art recommen-

dation algorithms on various tasks but also achieves high modeling

efficiency regarding execution time and memory usage.

5 ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,

Singapore under its International Research Centres in Singapore

Funding Initiative. Any opinions, findings and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not reflect the views of National Research Foundation, Sin-

gapore.

REFERENCES
[1] Ai, Q., Azizi, V., Chen, X., and Zhang, Y. Learning heterogeneous knowledge

base embeddings for explainable recommendation. Algorithms (2018).
[2] Chen, C., Zhang, M., Liu, Y., and Ma, S. Neural attentional rating regression

with review-level explanations. In Proceedings of the 2018 World Wide Web Con-
ference (2018), WWW ’18, International World Wide Web Conferences Steering

Committee, p. 1583–1592.

[3] Chen, C.-M., Tsai, M.-F., Lin, Y.-C., and Yang, Y.-H. Query-based music recom-

mendations via preference embedding. In Proceedings of the 10th ACM Conference
on Recommender Systems (2016), RecSys ’16, Association for Computing Machin-

ery, p. 79–82.

[4] Chen, C.-M., Wang, C.-J., Tsai, M.-F., and Yang, Y.-H. Collaborative similarity

embedding for recommender systems. In Proceedings of the 28th International
Conference onWorldWideWeb, WWW ’19, Association for ComputingMachinery,

p. 2637–2643.

[5] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H.,

Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haqe, Z., Hong, L.,

Jain, V., Liu, X., and Shah, H. Wide & deep learning for recommender systems.

In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems
(2016), DLRS ’16, Association for Computing Machinery, p. 7–10.

[6] Grbovic, M., and Cheng, H. Real-Time Personalization Using Embeddings for

Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2018), KDD ’18, Association

for Computing Machinery, p. 311–320.

[7] He, X., and Chua., T.-S. Neural factorization machines for sparse predictive

analytics. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (2017), SIGIR ’17, Association

for Computing Machinery, p. 355–364.

[8] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. Neural collaborative

filtering. In Proceedings of the 26th International Conference on World Wide
Web (2017), WWW ’17, International World Wide Web Conferences Steering

Committee, pp. 173–182.

[9] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for recom-

mender systems. Computer 42, 8, 30–37.
[10] Le, Q., and Mikolov, T. Distributed representations of sentences and documents.

In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32 (2014), ICML ’14, JMLR.org, p. II–1188–II–1196.

[11] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning entity and relation

embeddings for knowledge graph completion. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (2015), AAAI ’15, AAAI Press, p. 2181–2187.

[12] Liu, D., Li, J., Du, B., Chang, J., and Gao, R. Daml: Dual attention mutual

learning between ratings and reviews for item recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2019), KDD ’19, Association for Computing Machinery, p. 344–352.

[13] Ma, C., Kang, P., Wu, B., Wang, Q., and Liu, X. Gated attentive-autoencoder for

content-aware recommendation. In Proceedings of the 12th ACM International
Conference on Web Search and Data Mining (2019), WSDM ’19, Association for

Computing Machinery, p. 519–527.

[14] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 (2013).
[15] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 2 (2013), NIPS ’13, Curran Associates Inc., p. 3111–3119.

[16] N. Sivaramakrishnan1, V.Subramaniyaswamy, A. V. V. V. N. S. A deep learning-

based hybrid model for recommendation generation and ranking. Neural Com-
puting and Applications (2020).

[17] Ni, J., Li, J., and McAuley, J. Justifying recommendations using distantly-

labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (2019), Association
for Computational Linguistics, pp. 188–197.

[18] Niu, F., Recht, B., Re, C., and Wright, S. J. Hogwild! a lock-free approach to

parallelizing stochastic gradient descent. In Proceedings of the 24th International
Conference on Neural Information Processing Systems, NIPS ’11, Curran Associates

Inc., p. 693–701.

[19] Rendle, S. Factorization Machines with LibFM. ACM Transactions on Intelligent
Systems and Technology 3, 3 (2012), 1–22.

[20] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. Bpr:

Bayesian personalized ranking from implicit feedback. In Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence, UAI ’09, AUAI Press,
p. 452–461.

[21] Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., and Lee, D. L. Billion-

scale commodity embedding for e-commerce recommendation in alibaba. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2018), KDD ’18, Association for Computing Machinery,

p. 839–848.

[22] Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. KGAT: Knowledge Graph

Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’19,

Association for Computing Machinery, p. 950–958.

[23] Weston, J., Bengio, S., and Usunier, N. Wsabie: Scaling up to large vocabulary

image annotation. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, IJCAI ’11, AAAI Press, p. 2764–2770.

[24] Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., and Chua, T.-S. Attentional fac-

torization machines: Learning the weight of feature interactions via attention

networks. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (2017), IJCAI ’17, AAAI Press, p. 3119–3125.

[25] Zhang, D., Yin, J., Zhu, X., and Zhang, C. SINE: Scalable incomplete network

embedding. In Proceedings of the IEEE International Conference on Data Mining
(2018), ICDM ’18, IEEE, pp. 737–746.

[26] Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y. Collaborative knowledge

base embedding for recommender systems. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2016),
KDD ’16, Association for Computing Machinery, p. 353–362.

[27] Zhao, W. X., He, G., Yang, K., Dou, H., Huang, J., Ouyang, S., and Wen, J.

Kb4rec: A data set for linking knowledge bases with recommender systems. Data
Intelligence (2019), 121–136.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem Definition
	2.2 Proposed TPR Framework
	2.3 Joint Learning of Implicit and Explicit Ranking Structures

	3 Experiment
	3.1 Datasets
	3.2 Baselines
	3.3 Experimental Settings
	3.4 Experimental Results
	3.5 Parameter Sensitivity and Memory and Time Usage

	4 Conclusion
	5 ACKNOWLEDGMENTS
	References

