
Appendices
A Pseudocode of L2P-GNN

The pseudocode of the pre-training procedure for L2P-GNN
is outlined in Algorithm 1. The training of L2P-GNN in-
volves the initialization of parameters, task construction, as
well as node-level and graph-level adaptations. At the begin-
ning (Line 1), we randomly initialize all learnable parameters
θ in our L2P-GNN, including the node-level aggregation pa-
rameters ψ and graph-level pooling parameters ω. Then, we
construct child tasks and the parent task for the graph G. Each
child task consists of a support set and a query set, each of
which contains edges randomly sampled from the edge distri-
bution pE of the graph (Line 2). In each training iteration, for
each child task T cG , we perform node-level adaptation on the
support set (Line 4–8). Furthermore, we conduct graph-level
adaptation with the sub-structure and whole graph representa-
tions (Line 9–12). At last, we update all learnable parameters
in L2P-GNN (Line 13). The process stops when the model
converges.

Algorithm 1 Pre-training of L2P-GNN

Require: a pre-training graph G = (V, E ,X ,Z); node and
graph-level update steps: s and t; node-level, graph-level
and prior learning rates: α, β and γ; number of child-
tasks: k; support set and query set size: m and n.

1: Randomly initialize GNN parameters θ = {ψ, ω}
2: Construct child tasks and the parent task for the graph G

by Eq. (6): TG = (T 1
G , T 2

G , · · · , T kG),
each child task T cG consisting of a support ScG and a query
set QcG , and ScG = {(u, v) ∼ pE},QcG = {(p, q) ∼ pE}.

3: while not done do
4: for all child task T cG w.r.t. graph G do
5: Compute node representation hlv by Eq. (1) for all

nodes in support set ScG
6: Evaluate Lnode(ψ,ScG) by Eq. (7)
7: Node-level adaptation by Eq. (10) with s updates
8: end for
9: Compute sub-structure representation with hScG =

Ω
(
ω;
{
hu|∀u,∃v : (u, v) ∈ ScG

})
10: Compute the whole graph representation hG by Eq. (2)

11: Evaluate Lgraph(ω,SG) by Eq. (8)
12: Graph-level adaptation by Eq. (11) with t updates
13: Update all learnable parameters θ in L2P-GNN by Eq.

(9)
14: end while

B Details and Processing of Datasets
We conduct experiments on two large-scale datasets, includ-
ing biology graphs (called Biology) and bibliographic graphs
(called PreDBLP). Here we provide more details of the two
datasets and any additional processing done.
Biology. Biology dataset comes from a public repository3,
covering 394,925 protein subgraphs. Following earlier work

3http://snap.stanford.edu/gnn-pretrain

(Hu et al. 2020), we perform biological function prediction
on the Biology data. Detailed information about the dataset
can be found in Appendix D of the original paper (Hu et al.
2020).
PreDBLP. To enrich graph pre-training data from a differ-
ent domain, we further present PreDBLP, a new compilation
of bibliographic graphs. We derive the new PreDBLP data
from AMiner4 and DBLP5. Specifically, PreDBLP contains
1,054,309 paper subgraphs in 31 fields (e.g., artificial intel-
ligence, data mining). Each subgraph is centered at a paper
and contains the associated information of the paper.

The original Aminer/DBLP contains both the records of
each paper and the implicit relations between papers, au-
thors, venues and keywords. For each paper record in the
Aminer/DBLP data, we generate a subgraph centered on the
paper as follows: (1) according to the citation relationship, we
perform a breadth-first search to select the subgraph nodes,
with a search depth limit of 2 and a maximum number of 10
neighbors randomly expanded per node; (2) we include the
selected paper nodes and all the edges between those paper
nodes into the subgraph; (3) we convert the authors attached
to each paper’s record to nodes as well, and link them to the
paper; (4) we utilize the same procedure as in (3) to incorpo-
rate the information of venues and keyword terms. As a result,
each subgraph compiled contains four types of nodes (i.e., pa-
per, author, venue and keywords) and edges (i.e., paper-paper,
paper-author, paper-venue, paper-keywords).

We further utilize a set of node and edge features for the
subgraph. For each subgraph, we set the node/edge features
as their corresponding types. For instance, for nodes u and
v connected via edge (u, v), the feature of u and v are their
respective type and that of edge (u, v) is the type of (u, v).

During the pre-training process, we utilize 794,862 sub-
graphs that belong to 25 research fields to pre-train a GNN
model. On average, each subgraph contains 262.43 nodes and
900.07 edges. In fine-tuning, we predict the research field
of 299,447 labeled subgraphs from the remaining 6 research
fields, including: Artificial intelligence (86,956 subgraphs),
Computational linguistics (20,024 subgraphs), Computer Vi-
sion (95,729 subgraphs), Data mining (14,934 subgraphs),
Databases (68,287 subgraphs) and Fuzzy systems (13,517
subgraphs).

C Implementation details of GNN Models
Here, we introduce the GNN architecture used in biological
function prediction on Biology and research field prediction
on PreDBLP. For both experiments, we utilize the GIN ar-
chitectures (Xu et al. 2019b) as an example to explain how
to incorporate the node features and edge features in the
subgraphs.
Biological Function Prediction. Following previous work
(Hu et al. 2020), the raw node features are uniform and the
raw input edge features are binary vectors since the protein
subgraphs only have edge features. We adopt the same GNN
architecture as in (Hu et al. 2020) for protein function predic-

4https://www.aminer.cn/citation
5https://dblp.uni-trier.de

tion. Detailed implementation please refer to the Appendix
A in (Hu et al. 2020).
Research Field Prediction. In research field prediction,
the raw node features are 4-dimensional one-hot vectors,
denoted as xv ∈ R4 for node v. The raw edge features are
1-dimensional type vector indicting the type of edge, denoted
as zuv ∈ R1 (see Appendix B for details). As input features
to GNNs, we first embed the feature vectors by

h0
v = Wnodexu + bnode (A.1)

hleuv = Wedgezuv + bedge for l = 0, 1, ..., L− 1, (A.2)

where Wnode, bnode,Wedge and bedge are learnable param-
eters. At each layer, GNNs update node representations by

hlv =RELU(MLPl(CONCAT (A.3)

(
∑

u∈Nu∪{v}
hl−1u ,

∑
euv :u∈Nu∪{v}

hl−1e))),

where CONCAT(·) takes two vectors as input and concate-
nates them, andNu is a set of nodes adjacent to node v. Note
that we remove the RELU activation in the final layer so as
to output negative values in hlv .

With the aggregation and update of node/edge features,
we generate node embeddings at final layer l to obtain the
graph-level representation hG :

hG = MLP(MEAN
({

hlv|v ∈ G
})

), (A.4)

where MEAN is the mean pooling operation and Ω(·) =
MLP(MEAN(·)) is the graph-level pooling calculation.

For other GNN architectures like GCN, GraphSAGE and
GAT, we adopt the implementation in the Pytorch Geomet-
ric library6. More specifically, the number of GAT attention
heads is set to 2 and the dimension of node/edge embeddings
as well as the number of GNN layers are the same as GIN.
Since these GNN models do not originally handle edge fea-
tures, we incorporate edge features into them similarly to
how we do it for the GIN; we add edge embeddings into node
embeddings, and perform the GNN message-passing on the
obtained node embeddings, as suggested in (Hu et al. 2020).

D Details of Experimental Settings
Implementation of Baselines To contextualize the empiri-
cal results of L2P-GNN on the pre-training benchmarks, we
compare against four self-supervised or unsupervised base-
lines:
• EdgePred (Hamilton, Ying, and Leskovec 2017) is a self-

supervised method to predict the connectivity of node pairs,
which adapts the same objective function as node-level loss
in L2P-GNN.

• DGI (Velickovic et al. 2019) learns node representations
within graph-structured data in an unsupervised manner,
which relies on maximizing mutual information between
patch representations and corresponding high-level sum-
maries of graphs—both derived using established graph
convolutional network architectures.
6https://github.com/rusty1s/pytorch_geometric

• ContextPred (Hu et al. 2020) utilizes node-level self-
supervised information to explore distribution of graph
structure. We use the suggested parameters to sample sub-
graphs to predict their surrounding graph structures.

• AttrMasking (Hu et al. 2020) is also a node-level self-
supervised pre-training strategy for GNNs, aiming to learn
the regularities of the node and edge attributes distributed
over graphs

All the above pre-training baselines and our L2P-GNN can
be implemented for different GNN architectures. We exper-
iment with four popular GNN architectures, namely, GCN
(Kipf and Welling 2017), GraphSAGE (Hamilton, Ying, and
Leskovec 2017), GAT (Velickovic et al. 2018) and GIN (Xu
et al. 2019b). We implement these GNNs with PyTorch Geo-
metric (PyG).
Parameter Settings We adopt Adaptive Moment Esti-
mation (Adam) to optimize our L2P-GNN. We select the
hyper-parameters that performed well across all downstream
tasks in the validation sets. In pre-training procedure, for
all datasets, we use a batch size of 64 and set the dimen-
sion of node representation to 300. We perform one step
gradient descent update in both node-level and graph-level
adaptations (i.e., s = t = 1). The prior learning rate, node-
level and graph-level learning rates are all set to 0.001 (i.e.,
γ = α = β = 0.001). We set the number of child tasks to 1
for all datasets, and set the sizes of support/query sets to 10/5
and 50/30 for Biology and PreDBLP dataset, respectively.
The number of layers of GNNs is set to 5 for all datasets.
The maximum number of epochs are set to 50 and 20 for
pre-training GNNs on Biology and PreDBLP dataset, respec-
tively. In fine-tuning procedure, all models are also trained
with Adam optimizer with a learning rate of 0.001. For all
downstream datasets, we use a batch size of 32 and train
models for 50 epochs.

For baselines, we optimize their parameters empirically
under the guidance of literature. Specifically, we also train
the baselines with Adam optimizer with a learning rate of
0.001 and set the dimension of node representation to 300.
As suggested in (Hu et al. 2020), we set the batch size to 256
for pre-training while 32 for fine-tuning Biology dataset. For
PreDBLP dataset, we set the batch size and the number of
epochs to be the same as in our L2P-GNN. Other baseline
parameters either adopt the original optimal settings or are
optimized by the validation set.
Experiment Environment All experiments are conducted
on a Linux server with one GPU (GeForce RTX 2080) and
CPU (Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz), and
its operating system is Red Hat 4.8.5-16. We implement the
proposed L2P-GNN with deep learning library PyTorch and
PyTorch Geometric. The Python and PyTorch versions are
3.7.6 and 1.4.0, respectively.

	Introduction
	Related Work
	Learning to Pre-train Motivation and Overview
	Preliminaries
	Learning to Pre-train GNNs

	Proposed Method
	Self-supervised Base Model
	Dual Adaptation
	Discussion

	Experiments
	Experimental Settings
	Performance Comparison
	Model Analysis

	Conclusion
	 Acknowledgments
	Pseudocode of L2P-GNN
	Details and Processing of Datasets
	Implementation details of GNN Models
	Details of Experimental Settings

